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Abstract

We propose a framework which ports Dirichlet Gaussian mix-
ture model (DPGMM) based labels to deep neural network
(DNN). The DNN trained using the unsupervised labels is
used to extract a low-dimensional unsupervised speech repre-
sentation, named as unsupervised bottleneck features (1BNFs),
which capture considerable information for sound cluster dis-
crimination. We investigate the performance of uBNF in query-
by-example spoken term detection (QbE-STD) on the TIMIT
English speech corpus. Our uBNF performs comparably with
the cross-lingual bottleneck features (BNFs) extracted from a
DNN trained using 171 hours of transcribed telephone speech
in another language (Mandarin Chinese). With the score fusion
of uBNFs and cross-lingual BNFs, we gain about 10% relative
improvement in terms of mean average precision (MAP) com-
paring with the cross-lingual BNFs. We also study the perfor-
mance of the framework with different input features and dif-
ferent lengths of temporal context.

Index Terms: unsupervised feature learning, low-resource
speech processing, Dirichlet process Gaussian mixture model,
spoken term detection, bottleneck feature

1. Introduction

Query-by-example spoken term detection (QbE-STD) [1, 2]
search queries in an audio archive by acoustic pattern match-
ing between spoken examples and test utterances in the archive.
Since this task does not necessarily require the linguistic exper-
tise and transcription of the target data, it has gained attention
from researchers in recent years [1, 2, 3, 4].

Various types of unsupervised acoustic features, which are
based on spectral features [1, 2], frame clustering [1, 2, 5], seg-
ment clustering with GMM-HMM modeling [6], speech man-
ifold [7, 8, 4] and deep neural networks (DNNs) [9, 10], have
been studied in QbE-STD or related tasks. These unsupervised
frameworks attempt to discover the phonetic or phonetic-like
units, and model them purely from speech data without linguis-
tic expertise or transcription. On the other hand, some work-
s [11, 12, 13, 14, 15] studied the acoustic features whose mod-
els were trained supervisedly using the linguistic expertise and
transcription of high-resource non-target languages. Moreover,
fusion of unsupervised and/or supervised features has also been
studied in [16, 3, 17, 14, 15], which suggests that unsuper-
vised learning and supervised learning can gather complemen-
tary knowledges from the target speech data and benefits the
down-stream tasks.

In this paper, inspired by [12] which studied deep Boltz-
mann machines (DBMs) supervised by Gaussian mixture mod-
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el (GMM) based labeling to extract better posteriorgrams, we
propose to extract a low-dimensional data representation based
on DNNs in an unsupervised way. Firstly, a Dirichlet process
Gaussian mixture model (DPGMM) is trained on speech frames
with no transcription and each speech frame is transcribed with
the DPGMM’s component assignment. Then a bottleneck-
shape DNN is trained with the transcribed speech frames. By
forward passing feature vectors of the queries and test utter-
ances through the trained DNNSs, the output of an inner bottle-
neck layer yield a low-dimensional representation, referred to
as bottleneck features (BNFs). Since DPGMM is an unsuper-
vised clustering algorithm, we refer to our proposed DNNs and
the corresponding BNFs as unsupervised DNNs (uDNNs) and
unsupervised BNFs (uBNFs) respectively.

Our proposed features were evaluated on the TIMIT speech
corpus. We employed subsequence-DTW (SDTW) [18] for a-
coustic pattern matching in QbE-STD. Recently cross-lingual
BNFs have been widely used in QbE-STD [15, 19]. Cross-
lingual BNFs (M-BNF) extracted from a DNN supervisedly
trained using the HKUST Mandarin Chinese telephone speech
corpus (LDC2005S15) were considered as baseline features in
our experiments. We conducted comparison between uBNF-
s, uDNN-based posteriorgrams (uUDNN-PG), DPGMM-based
posteriorgrams (PG) and the baseline features. To investigate
whether our uBNF and M-BNF can provide complementary in-
formation for QbE-STD, we performed the score fusion of these
two sets of features. Moreover, DNNs do not require uncorre-
lated input features. The work in ASR [20] showed that the
DNN trained using filter-bank (FBank) features can outperfor-
m that trained using MFCC. We would study whether similar
observation is also made in our unsupervised training scenario.
Moreover, we studied the effect of temporal context length of
input features on uBNFs for QbE-STD.

Note that our framework differs from [12] in the follow-
ing aspects. 1) We use DPGMM instead of GMM. Note
that [1, 2, 12] utilized small numbers (e.g. 50 or 61) of Gaussian
components while [21, 14, 15] used hundreds of Gaussain com-
ponents. We argue that a small number of Gaussian components
is usually not sufficient to represent the speech data and the
model complexity should be tuned on a development dataset.
Meanwhile, our previous study [5] illustrated that DPGMM can
learn its model complexity (i.e. the number of Gaussian com-
ponents) automatically according to the observed speech data.
Moreover, although a set of hyper-parameters is involved for
configuring DPGMM, as shown in [5], DPGMM is not sensitive
to the choice of hyper-parameters and parallel inferring DPG-
MM is scalable to a large amount of speech frames. In sum-
mary, porting DNNs to DPGMM labeling makes our uDNNs
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more suitable for QbE-STD in scenarios where developmen-
t dataset or linguistic knowledge is inaccessible, and it makes
the uDNNs feasible to large-scale speech dataset. 2) We ex-
tract features from the inner bottleneck layer instead of the last
softmax layer. The bottleneck features provide a more compact
feature representation than the posterior features provided in the
last softmax layer, while retaining considerable information for
sound cluster classification. The low-dimensional feature rep-
resentation reduces tremendous time cost and storage load for
dynamic time warping (DTW) in QbE-STD. 3) We show that
using FBank together with FO features in training the uDNNs
brings performance gain while MFCC were used in [12].

2. Unsupervised Bottleneck Features

The proposed unsupervised bottleneck features (uBNFs) are ex-
tracted from bottleneck-shaped DNNs trained with labels from
an unsupervised clustering method. Here we refer to this type
of DNNs as uDNNs. Our proposed framework for training the
ulNNs consists of two modules, unsupervised cluster labeling
using Dirichlet process mixture model (DPGMM) and DNN
training using the unsupervised labels.

2.1. Unsupervised Labeling Using DPGMM

Studies in [2, 12, 21, 14, 15, 5] suggest that the complexity of G-
MM needs fine-tuning on a development set to represent speech
sufficiently. Thus instead of GMM, we employ a Bayesian non-
parametric model, Dirichlet process Gaussian mixture model
(DPGMM) also referred to as infinite Gaussian mixture model
(IGMM), to represent speech since DPGMM is able to learn a
suitable number of components. DPGMM can be depicted as a
graphical model illustrated in Figure. 1.

Meanwhile, as studied in [5], parallel inference of DPG-
MM based on split/merge sampling [22] can be scalable to a
large amount of speech frames and DPGMM is insensitive to
the hyper-parameters, o and 8p = {myo, So, ko, o }. This leads
DPGMM to be a suitable and feasible choice to represent speech
data, especially for low-resource language scenarios. To be con-
cise, we recall the physical meaning of these hyper-parameters
without details of DPGMM modeling. Specifically, « specifies
the prior distribution of the mixing weights. myg is the prior
mean for the mean of each component. Sy is proportional to
the prior mean for the covariance matrix for each component.
ko and o measure the belief-strength in mg and Sy, respec-

tively.
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Figure 1: Graphical representation of Dirichlet process Gaus-
sian mixture model (DPGMM).

Note that some other Bayesian nonparametric models [23,
24] were developed to model speech data. Considering the in-
ference efficiency of Bayesian nonparametric models, this paper
merely investigates DNNs with DPGMM labeling.

Given feature vectors of speech frames X = {x;},,
the inference of DPGMM results in K components together
with their mixing weights, @ = (m1,..., Tk ), mean vectors,
= {pr}f_, and covariance matrix, ¥ = {Z;}5 ;. The
posterior probability of the k-th component conditioned on the
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i-th observed speech frame, x;, can be computed as follows:

TN (x| o, 3
Pk = plelx) = —* (il e, Ze)
Z]’:l TN (xi|pj, £;)
Then p; = (pi1,...,pi,x)(@ = 1,...,N) forms a posterior-
gram. The label of x;, denoted as [; is computed as follows:
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l;(x;) = arg max p; k.
i(xi) g ISkSKpZ’

2.2. DNN Training Using Unsupervised Labels

For low-resource settings, DNN training is infeasible due to the
lack of transcribed data. However, [12] argues that a weaker
classifier is able to initialize a stronger classifier and it presented
a way to train Deep Boltzmann Machines (DBM) in which the
fully unsupervised learnt labels using GMM are used as tran-
scription. Based on this assumption and their positive results,
we train DNNs by incorporating DPGMM labeling presented in
Sec. 2.1. Since DPGMM is a unsupervised clustering method,
we refer to our DNNs as uDNNs. Noted that the number of tar-
gets in DBM in [12] is set to 61, the size of English phoneme
set. Since DPGMM is free of manual selection of number of
components which is more suitable to low-resource scenario.
Meanwhile, to save time during downstream searching steps
and space for storage, we form the DNNs with bottleneck layer-
s, as illustrated in Figure. 2, to extract low-dimensional speech
representation, referred to as uBNF.

Specifically, the first layer of our uDNNs expands the raw
feature by concatenating the input vector with its left and right
N (+/-N) feature vectors to utilize temporal context informa-
tion. The internal bottleneck layer consists of linear transfor-
mation units and the last layer consists of linear transformation
units and Softmax operation. All other hidden layers consist
of linear transformation units together with Sigmoid operation.
The configuration of our DNNSs is illustrated in Table. 1.

For training, firstly we employ Restricted Boltzmann Ma-
chines (RBMs) to conduct pre-training and then the uDNNs are
trained by minimizing cross-entropy with maximum 20 itera-
tions. Both of pre-training and training procedures are run with
Kaldi [25].

3. Query-by-example Spoken Term
Detection

Query-by-example spoken term detection (QbE-STD) consist-
s of two successive modules, including feature extraction and
detection based on pattern matching. The framework of our
QbE-STD system is illustrated in Figure. 2.

3.1. Feature Extraction

In feature extraction, various acoustic features, such as Mel-
frequency cepstral coefficients (MFCC), posteriorgrams and
bottleneck features (BNFs), are commonly used in QbE-STD.
In this paper, the uBNFs and uDNN-PGs are obtained by
forward-passing raw speech features through the proposed
uDNNs by taking the outputs of the inner bottleneck layer and
the last layer of the uDNN presented in Sec. 2.2, respectively.
DPGMM-based posteriorgrams can be computed as described
in Sec. 2.1.

3.2. Detection Based on Pattern Matching

Acoustic pattern matching can be implemented in various vari-
ants of dynamic time warping (DTW) which is used to align
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Figure 2: Framework of QbE-STD based on unsupervised bottleneck features (uBNFs).

Table 1: Configurations of DNNs.

Input Features | Ndim Len. Con. Size
MFCC 39 +/-1,4/-3,+/-5 | 1024x4,40,1024,306
FBank 36 +/-1,4/-3,4/-5 | 1024x4,40,1024,306
FBank+F0 39 +/-1,4/-3,4/-5 | 1024x4,40,1024,306

two sequences of acoustic feature vectors in various tasks, e.g.
speech pattern discovery [1, 2], speech summarization [26],
story segmentation [27, 28], etc. In this paper, we employ
subsequence-DTW (SDTW) described in [18] to conduct a-
coustic pattern matching between a query and a test utterance
in the retrieval archive.

Given two sequences of acoustic feature vectors from a
spoken query and a test utterance, Q = (q1,q2, ..., qn) and
U = (ui,us,...,uy) where the M and N are the lengths of
the query and the test utterance, for MFCC and BNFs, the dis-
tance d; ; between arbitrary two vectors, q; and uy, is comput-
ed as

 qiu
Qi ||yl

3

dij =
For posteriorgrams, we use negative logarithm of inner-product

di,; = —log(a; ;). “
Using the SDTW based on dynamic programming (DP) on the
distance matrix composed by aforementioned distances, we can
find an optimal path with minimum distance cost which can be
regarded as the dissimilarity between the query, Q, and the test
utterance, U. For the spoken query Q, all the test utterances
U = {Uk}kK:U1 are ranked in an ascending order according to
the dissimilarities.

4. Experiments
4.1. Data and Experimental Setup

Our QbE-STD experiments were conducted on the TIMIT
speech corpus which consists of a training set of 4620 utter-
ances and a test set of 944 utterances. The training set was used
to train the DPGMM and then divided into two subsets, train-
ing subset and cross-validation subset with the size ratio of 9:1,
for training DNNs. We extracted 69 queries, totally 346 spoken
examples, which consist of at least 6 English letters and are at
least 0.35s. The test set was used as the retrieval archive. For
each query, a correct hit is counted if an utterance in the retrieval
contains the query.
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We conducted the comparison study of MFCC, BN-
Fs and posteriorgrams. Firstly, 39-dimensional MFCC
(13-dimensional MFCC+A+AA) were extracted and then
post-processed by cepstral mean and variance normalization
(CMVN), which were our weak baseline features. Second-
ly, 40-dimensional cross-lingual BNFs were extracted from
a Mandarin Chinese tokenizer (M-BNF), which is a stacked
bottleneck-shaped DNN [19] trained on 171 hours of speech
from the HKUST Mandarin telephone corpus (LDC2005S15).
In the stacked hierarchical network, the first-stage network takes
FBank+FO features as input. The first-stage and the second-
stage networks have the topology of 1500-1500-80-412 and
1500-1500-40-412 respectively, where the 412 is the number of
senones. We regarded the cross-lingual BNFs as strong baseline
features since they were extracted from a tokenizer trained us-
ing manual transcripts. Thirdly, we tested uBNFs denoting 40-
dimensional BNFs extracted from our proposed uDNNs. Dur-
ing unsupervised labeling, we trained a DPGMM on MFCC of
the training set setting parameters following [5]. Specifically,
these parameters including « and 8¢ = {my, So, Ko, Vo }. Mg
and S, were set as the global mean and covariance of the post-
processed MFCC, respectively. vo was set to 41. « and ko
were set to 1. After training, we obtained a 306-component
DPGMM. Then we trained the uDNNs with the configurations
listed in Table. 1. Finally, posteriorgrams from the DPGMM
(PGs) and DPGMM-supervised DNN (uUDNN-PGs) were test-
ed. Additionally, we conducted a score fusion of the language-
mismatched BNF and the best uBNF in QbE-STD, where the
fusion weight of each type of BNFs was set to 0.5.

Moreover, comparison of different input features for extrac-
tion of uBNFs were conducted in terms of the QbE-STD perfor-
mance. MFCC, FBank and FBank+FO features were studied in
the comparison to see whether our uDNN requires input fea-
tures to be correlated. In the end, we studied the effect of tem-
poral context length of uBNF with different input features.

All spectral features, including MFCC, FBank, and F-
Bank+FO features, were extracted using Kaldi and had the same
window length (25 ms) and shift length (10 ms). And, the QbE-
STD was evaluated in terms of three metrics: 1) MAP: the mean
average precision for correct hits in the retrieval; 2) P@N: the
average precision of the top N utterances where N is the number
of the correct hit utterances in the retrieval archive; 3) P@10 :
the average precision over the first 10 ranked utterances.
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Figure 3: Distance matrix of feature representations for a query,
organizations and a test utterance planned parenthood organi-
zations promote birth control with optimal path found by S-

DTW.

Table 2: Comparison of features with score fusion.

organizations  promote

Feature/Method NDim | MAP | P@N | P@10
MFCC 39 0.285 | 0.289 | 0.247
ISA [4] 39 0.369 | 0.356 | 0.303

PG 306 0.405 | 0.390 | 0.340
uDNN-PG 306 0.412 | 0.396 | 0.349
M-BNF 40 0.494 | 0.459 | 0413
uBNF 40 0.494 | 0.47 0.412

[ 0543 | 0508 | 0.453

[ Score fusion (M-BNF & uBNF) [ -

4.2. Results and Discussion

Table. 2 gives the comparison of different feature representa-
tions with score fusion. Here we also report the best result of
intrinsic spectral analysis (ISA) based features from [4] since
ISA is a low-dimensional unsupervised representation although
there is a slight difference in the selection of query and retrieval
archive.

As illustrated in Table. 2, uBNF clearly outperform MFCC,
PGs and uDNN-PGs in terms of the three evaluation metrics.
The uDNN is shown capable of predicting the Gaussian com-
ponent labels given by DPGMM, and even improves PG by its
deep structure. This is similar to the observation in [12]. Com-
pared with uDNN-PGs, the gain made by uBNFs may be at-
tributed to the difference of distance measure used in these two
different types of features. It is worth noting that uBNFs also
provide a more compact representation than uDNN-PGs.

Moreover, uBNFs perform comparably with M-BNFs.
Note that the M-BNF extractor was trained using a large amoun-
t of transcribed out-of-domain data. It has mismatches in
languages, channels and speaker styles with the target data.
These mismatches are not uncommon when working on a low-
resource language. M-BNFs were used to show a baseline per-
formance which is achievable when transcribed data in the tar-
get language is not available. We believe that our proposed
framework is effectient to capture considerable frame-based in-
formation for sound cluster discrimination.

Figure. 3 shows the distance matrix of a pair of query and
test utterances, with the spoken word(s) of the query (test) utter-
ance listed on the vertical (horizontal) axis. Colours in the dis-
tance matrix depict the distance between speech frames, with
red (blue) indicating large (small) distances. A more salient
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Table 3: Effect of raw input features of uBNFs.

Feature MAP | P@N | P@10
MFCC 0.459 | 0.432 | 0.391
FBank 0.489 | 0.459 | 0.411
FBank+FO | 0.494 | 0.47 0.412

Table 4: Effect of temporal context length.

Feature(Raw Feature) | Len. Con. MAP P@N | P@10
uBNF (MFCC) +/-1 0.459 | 0.432 | 0.391
uBNF (MFCC) +/-3 0.449 | 0427 | 0.375
uBNF (MFCC) +/-5 0.444 | 0419 | 0.381
uBNF ( FBank) +/-1 0.4 0.383 | 0.338
uBNF (FBank) +/-3 0.468 | 0.440 | 0.395
uBNF (FBank) +/-5 0.489 | 0459 | 0411

uBNF ( FBank+FO0) +/-1 0.436 | 0.416 | 0.366
uBNF (FBank+F0) +/-3 0.488 | 0.457 | 0.405
uBNF (FBank+FO0) +/-5 0.494 0.47 0.412

blue diagonal band in the hit region, and larger areas of red and
yellow in other regions are revealed in uBNF. The distance ma-
trix of uBNF and M-BNF show the similar observation. These
observations are consistent with the results shown in Table. 2.

Noteworthily, by score fusion of M-BNFs and our uBNFs,
the performance gains a boost in QbE-STD about 10% relative
improvement in terms of MAP comparing with using M-BNFs.
This tells us that supervised learned features and unsupervised
learned features can capture complementary phonetic informa-
tion and fusion of them is a simple but powerful strategy to im-
prove the QbE-STD performance.

Table. 3 illustrates the effect of different input features in
uBNF extraction for QbE-STD. As shown in Table. 3, FBank
features performs better than MFCC. This is consistent with the
observation in conventional ASR [20], that DNN is a more flex-
ible model which does not require the input features to be un-
correlated. Meanwhile, FBank+FO0 features perform the best,
showing that pitch features do not hurt the performance in the
non-tonal target language which is consistent with the observa-
tion in [29].

Table. 4 shows the effect of different temporal contex-
t lengths in uBNF extraction on QbE-STD. When MFCC are
used as input features, concatenation with +/- 1 frame contex-
t gives the best performance. However, FBank and FBank+F0
features perform the best when concatenation with +/- 5 frame
context is used. Moreover, uBNFs based on FBank or F-
Bank+FO features generally perform better than MFCC when
larger than +/- 3 frame context is used.

_ 5. Conclusions
In this paper, we proposed a framework which ports DPGMM-

based labels to DNNs. Since the DPGMM can cluster speech
frames effectively in an unsupervised fashion and does not re-
quire to set its model complexity manually, our framework is
suitable to low-resource QbE-STD and scenarios where no de-
velopment dataset is accessible. Within this framework, we can
extract a low-dimensional speech representation which can cap-
ture considerable information for sound cluster discrimination
comparably with cross-lingual BNFs. By the score fusion of the
proposed uBNF and M-BNF, we can obtain about 10% relative
improvement comparing with M-BNF in QbE-STD in terms of
MAP. Moreover, this framework inherits the feature of DNNs
that it is insensitive to whether the input feature is uncorrelated.
FBank+FO is suitable for uBNF extraction to conduct QbE-STD
when longer temporal context is used.

. 6. Acknowledgements
This work was supported by the National Natural Science Foun-

dation of China (Grant No. 61571363).



[1]

[2

—

[3

=

[4

=

[5

=

[6]

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

7. References

A. S. Park and J. R. Glass, “Unsupervised pattern discovery in
speech,” IEEE Trans. Audio, Speech, and Language Process.,
vol. 16, no. 1, pp. 186-197, 2008.

Y. Zhang and J. R. Glass, “Unsupervised spoken keyword spotting
via segmental DTW on Gaussian posteriorgrams,” in Proc. ASRU.
IEEE, 2009, pp. 398—403.

H. Wang, T. Lee, C.-C. Leung, B. Ma, and H. Li, “Using parallel
tokenizers with dtw matrix combination for low-resource spoken
term detection,” in Proc. ICASSP. 1EEE, 2013, pp. 8545-8549.

P. Yang, C.-C. Leung, L. Xie, B. Ma, and H. Li, “Intrinsic spectral
analysis based on temporal context features for query-by-example
spoken term detection,” in Proc. INTERSPEECH. 1SCA, 2014,
pp. 1722-1726.

H. Chen, C.-C. Leung, L. Xie, B. Ma, and H. Li, “Parallel Infer-
ence of Dirichlet Process Gaussian Mixture Models for Unsuper-
vised Acoustic Modeling: A Feasibility Study,” in Proc. INTER-
SPEECH. ISCA, 2015, pp. 3189-3193.

H. Wang, C.-C. Leung, T. Lee, B. Ma, and H. Li, “An acous-
tic segment modeling approach to query-by-example spoken term
detection,” in Proc. ICASSP. IEEE, 2012, pp. 5157-5160.

A. Jansen, S. Thomas, and H. Hermansky, “Intrinsic spectral anal-
ysis for zero and high resource speech recognition.” in Proc. IN-
TERSPEECH. 1SCA, 2012, pp. 879-882.

A. Jansen and P. Niyogi, “Intrinsic spectral analysis,” IEEE Trans.
Signal Process., vol. 61, no. 7, pp. 1698-1710, 2013.

L. Badino, C. Canevari, L. Fadiga, and G. Metta, “An auto-
encoder based approach to unsupervised learning of subword u-
nits,” in Proc. ICASSP. 1EEE, 2014, pp. 7634-7638.

H. Kamper, M. Elsner, A. Jansen, and S. Goldwater, “Unsuper-
vised neural network based feature extraction using weak top-
down constraints,” in Proc. ICASSP. 1EEE, 2015, pp. 5818—
5822.

T. Hazen, W. Shen, and C. White, “Query-by-example spoken ter-
m detection using phonetic posteriorgram templates,” in Proc. AS-
RU. 1IEEE, 2009, pp. 421-426.

Y. Zhang, R. Salakhutdinov, H. A. Chang, and J. Glass, “Resource
configurable spoken query detection using deep boltzmann ma-
chines,” in Proc. ICASSP. IEEE, 2012, pp. 5161-5164.

G. S. T. Schatz and E. Dupoux, “Phonetics embedding learning
with side information,” in Proc. SLT. 1EEE, 2014, pp. 106-111.

P. Yang, H. Xu, X. Xiao, L. Xie, C.-C. Leung, H. Chen, J. Yu,
H. Lv, L. Wang, S. J. Leow, B. Ma, C. E. Siong, and H. Li, “The
NNI query-by-example system for mediaeval 2014,” in Working
Notes Proc. MediaEval 2014, 2014.

J. Hou, V. T. Pham, C.-C. Leung, L. Wang, H. Xu, H. Lv, L. Xie,
Z. Fu, C. Ni, X. Xiao, H. Chen, S. Zhang, S. Sun, Y. Yuan, P. Li,
T. L. Nwe, S. Sivadas, B. Ma, E. S. Chng, and H. Li, “The N-
NI Query-by-Example System for MediaEval 2015,” in Working
Notes Proc. Mediaeval 2015, 2015.

927

[16]

(17]

[18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

(26]

[27]

(28]

[29]

A. Muscariello, G. Gravier, and F. Bimbot, ‘“Zero-resource audio-
only spoken term detection based on a combination of template
matching techniques,” in Proc. INTERSPEECH. ISCA, 2011,
pp. 921-924.

B. Ludusan, A. Caranica, H. Cucu, A. Buzo, C. Burileanu, and
E. Dupoux, “Exploring multi-language resources for unsuper-
vised spoken term discovery,” in Proc. SpeD. IEEE, 2015, pp.
1-6.

A. Muscariello, G. Gravier, and F. Bimbot, “Audio keyword
extraction by unsupervised word discovery,” in Proc. INTER-
SPEECH. 1SCA, 2009, pp. 2843-2846.

K. Vesely, M. Karafidt, and F. Grézl, “Convolutive bottleneck net-
work features for LVCSR,” in Proc. ASRU. IEEE, 2011, pp.
42-47.

G. Hinton, L. Deng, D. Yu, A. rahman Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, T. S. G. Dahl, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recog-
nition,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97,
November 2012.

H. Wang, T. Lee, C.-C. Leung, B. Ma, and H. Li, “Unsuper-
vised mining of acoustic subword units with segment-level Gaus-
sian posteriorgrams,” in Proc. INTERSPEECH. ISCA, 2013, pp.
2297-2301.

J. Chang and J. W. Fisher III, “Parallel sampling of DP mixture
models using sub-clusters splits,” in Proc. NIPS, 2013, pp. 620-
628.

C.-Y. Lee and J. Glass, “A nonparametric bayesian approach to
acoustic model discovery,” in Proc. ACL. ACL, 2012, pp. 40—
49.

A. H. Harati Nejad Torbati, “Nonparametric bayesian approaches
for acoustic modeling,” Ph.D. dissertation, TEMPLE UNIVERSI-
TY, 2015.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in Proc. ASRU, no. EPFL-
CONF-192584. 1IEEE, 2011.

M. Dredze, A. Jansen, G. Coppersmith, and K. Church, “NLP on
spoken documents without ASR,” in Proc. EMNLP. ACL, 2010,
pp. 460-470.

L. Zheng, C.-C. Leung, L. Xie, B. Ma, and H. Li, “Acoustic text-

tiling for story segmentation of spoken documents,” in Proc. I-
CASSP. IEEE, 2012, pp. 5121-5124.

H. Chen, L. Xie, W. Feng, L. Zheng, and Y. Zhang, “Topic seg-
mentation on spoken documents using self-validated acoustic cut-
s,” Soft Computing, vol. 19, pp. 47-59, 2015.

F. Metze, Z. A. W. Sheikh, A. Waibel, J. Gehring, K. Kilgour,
Q. B. Nguyen, and V. H. Nguyen, “Models of tone for tonal and
non-tonal languages,” in Proc. ASRU. IEEE, 2013, pp. 261-266.



	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Cheung-Chi Leung
	Also by Lei Xie
	Also by Bin Ma
	Also by Haizhou Li
	----------

