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Abstract
Although complex-valued neural networks (CVNNs) – net-
works which can operate with complex arithmetic – have been
around for a while, they have not been given reconsideration
since the breakthrough of deep network architectures. This
paper presents a critical assessment whether the novel tool
set of deep neural networks (DNNs) should be extended to
complex-valued arithmetic. Indeed, with DNNs making inroads
in speech enhancement tasks, the use of complex-valued input
data, specifically the short-time Fourier transform coefficients,
is an obvious consideration. In particular when it comes to per-
forming tasks that heavily rely on phase information, such as
acoustic beamforming, complex-valued algorithms are omni-
present. In this contribution we recapitulate backpropagation
in CVNNs, develop complex-valued network elements, such as
the split-rectified non-linearity, and compare real- and complex-
valued networks on a beamforming task. We find that CVNNs
hardly provide a performance gain and conclude that the effort
of developing the complex-valued counterparts of the building
blocks of modern deep or recurrent neural networks can hardly
be justified.
Index Terms: complex optimization, complex-valued neural
network, beamforming

1. Introduction
Neural networks have taken the centerstage in the field of ma-
chine learning and pattern recognition. The majority of reported
work on networks, however, deals with real-valued networks –
networks whose inputs, weights and activations are all entirely
real. There are, however, several problems in which the ability
to operate on complex input to produce real or complex-valued
outputs is required. An example that easily comes to mind is
that of signal processing problems that are ideally addressed in
the complex short time Fourier transform (STFT) domain. If
these operations were to be performed by a neural network, the
network must deal with complex numbers. Instead, the com-
mon approach to these problems often is to ignore the phase (for
example in denoising autoencoder applications by [1] and [2])
or to otherwise approximate the problem as one of real-valued
calculus by simply splitting the backpropagation into two inde-
pendent real-valued backpropagations ([3], [4]). Alternatively,
the real and imaginary components of complex values may be
stacked into a single real-valued array, e.g., as in [5] who use
this approach to estimate complex weights of an array beam-
former from real-valued difference of arrival features or in [6],
where a stacked output consists of a real and an imaginary part
of a complex mask.

It is not that complex-valued neural networks (CVNNs)

have not been proposed; indeed they have been around for a
long time, e.g.,[7] or [8], who proposed CVNNs to be a general-
ization of real-valued neural networks (RVNNs) at least as early
as 1992. Complex-valued variants of most typical neural net-
work architectures have been proposed – as simple feed-forward
networks, as auto-associative memories i.e. by [9], as recurrent
networks ([10], [11]), etc. Not only have they been proposed
for operating on complex-valued inputs, they have also been
suggested as expansions of conventional real-valued networks
that could potentially generalize their capabilities, such as by
[8] above, and [12], etc. Several books, including recent ones
such as [13] and [14] greatly summarize the specifics and issues
related to CVNNs.

Nevertheless, it still remains unanswered, why complex-
valued neural networks are not used for current speech enhance-
ment algorithms, although these algorithms are typically formu-
lated in the complex-valued STFT domain. Further, almost all
works on CVNNs have been carried out in the pre-DNN era,
leaving open the question if deeper CVNNs are a viable option.

This contribution tries to point out, which problems exist
with complex-valued neural networks as well as advertises to
still use real-valued neural networks for tasks which have tra-
ditionally been solved by algorithms in the complex domain.
We selected a few speech enhancement problems and provide
training results for these minimal examples both for real- and
complex-valued neural networks. What sets this paper fur-
ther apart from prior work is the introduction of the split rec-
tified non-linearity, and the direct comparison of RVNNs and
CVNNs.

2. Complex backpropagation
To motivate a gradient descent algorithm, we first need to clarify
the differentiability problem. A complex function f : C→ C is
differentiable if the following limit converges to a single value
independent of the path of h:

df

dz
= lim
h→0

f(z + h)− f(z)
h

(1)

An example that this does not hold for simple building blocks
is given by the conjugate function f(z) = z∗ with two different
paths for h, where η ∈ R:

lim
η→0

(z + η)∗ − z∗

η
= 1, lim

jη→0

(z + jη)∗ − z∗

jη
= −1.

Only a certain class of functions is complex differentiable –
these functions are called holomorphic. In contrast many rel-
evant building blocks for neural networks, e.g. the cost func-
tion, can by definition not be holomorphic (due to its real-only
output).
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An elegant way around this is to make use of partial deriva-
tives, where [15] nicely proved that non-holomorphic functions
are still partially differentiable if one chooses the correct basis.
In principle, we can use any non-degenerative rotation of the
directions x = Re z or y = Im z as a basis. Using z and z∗ is
such a rotated basis and results in compact notations:

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗ (2)

Although there is an obvious relation between z and z∗,
we can still calculate partial derivatives by simply introducing
auxiliary functions a(z) = z and b(z) = z∗ and calculating
partial derivatives with respect to them independently.

Using the above total derivative, we can now motivate a
complex valued gradient descent as follows. Let l be the loss
function of our network. The total differential is then given as
follows:

dl =
∑
k

∂l

∂zk
dzk +

∑
k

∂l

∂z∗k
dz∗k =

∂l

∂z
dz +

∂l

∂z∗
dz∗, (3)

where the sum is over all output nodes.
If we now make use of (∂l/∂z )∗ = ∂l∗/∂z∗ and l = l∗

(since l is real-valued) we can identify an inner product for the
complex vector space:

dl = 2Re

{
∂l

∂z
dz

}
= 2Re


((

∂l

∂z∗

)T
)H

dz


= 2Re

{
(∇z∗ l)

Hdz
}
.

(4)

We now follow the argumentation by [15]: Due to the
Cauchy-Schwarz inequality |aHb| ≤ ||a|| · ||b||; the magnitude
of the inner products of two vectors is bounded by the product
of the norms. Therefore the inner product is maximized when
the two vectors are colinear, i.e. a = λb where λ ∈ C. Fur-
thermore, the inner product is positive and real, when λ ∈ R+.
Therefore, we conclude, that the function output l is maximally
reduced, when we change z according to this update:

dz = −µ∇z∗ l, where µ ∈ R+. (5)

To identify a recursion, we start by expanding the total
derivative of l(g(z)) and reorganize the terms:

dl =
∂l

∂g
dg +

∂l

∂g∗
dg∗

=
∂l

∂g

(
∂g

∂z
dz +

∂g

∂z∗
dz∗
)

+
∂l

∂g∗

((
∂g

∂z

)∗
dz∗ +

(
∂g

∂z∗

)∗
dz

)
=

(
∂l

∂g

∂g

∂z
+

∂l

∂g∗

(
∂g

∂z∗

)∗)
dz

+

(
∂l

∂g

∂g

∂z∗
+

∂l

∂g∗

(
∂g

∂z

)∗)
︸ ︷︷ ︸

= ∂l
∂z∗ = (∇z∗)

T

dz∗

(6)

Since l is a real-valued cost function l = l∗ and
(∂l/∂z)∗ = ∂l∗/∂z∗, the same equivalence holds: ∇z∗ =

(∇z)
∗. Therefore, each network element has to calculate three

different values:

∂g

∂z
,

∂g

∂z∗
, ∇z∗ =

(
(∇g∗)

∗ ∂g

∂z∗
+∇g∗

(
∂g

∂z

)∗)
. (7)

Only the gradient ∇z∗ then needs to be passed on to the previ-
ous network layer. This differs from [16], where they proposed
to always propagate two different gradients because a possible
objective might be complex. Since, for optimization problems
like network training, a cost function always needs to be in a
domain which is a totally ordered set (i.e. “≤” is defined), the
cost function will always be real-valued.

3. Building blocks
A feed forward neural network may now consist of fully con-
nected layers, non-linearities and a loss function.

3.1. Linearity

A classic fully connected layer g = Wz + b with a complex
parameter matrix W can be is used for training. It turns out, that
an extended linear layer h = Uz + Vz∗ + b, which holds a
parameter matrix to transform both the input z and its conjugate
z∗ is not necessary, since the conjugate operation can be learned
by just using classic fully connected layers as well. Therefore,
we will simply use a classic fully connected layer with a single
complex parameter matrix.

3.2. Non-Linearity

The Liouville theorem states that any bounded function that
is also holomorphic must be a constant; if the function is
bounded, but not a constant, it is not holomorphic. Differ-
ent non-linearities, all of them being either unbounded, non-
holomorphic, or both, have been presented in [14], e.g.:

fmt(z) = tanh |z|ej arg z, (8)
fst(z) = tanhRe z + j tanh Im z, (9)

where the former squashes the magnitude but does not change
the phase. The latter operates on the real and imaginary part
independently and is, thus, often called split non-linearity. Fur-
ther non-linearities are summarized in [13, Section 1.5.1].

Motivated by the fact, that rectified linear units (ReLUs)
work well for real-valued neural networks and are efficiently
computed, we will rely on a split rectified linear units (SplitRe-
LUs), meaning that the real and imaginary part is treated in-
dependently (see appendix for gradients). Preliminary experi-
ments led to the conclusion, that this non-linearity is just as ex-
pressive as the aforementioned non-linearities, is faster to eval-
uate and easier to implement:

fsr(z) = max(0,Re z) + jmax(0, Im z). (10)

3.3. Loss Function

Since, in the following, we want to compare real and complex
valued neural networks (when applying both on complex valued
problems) based on their loss function, we need to make sure,
that the cost functions are identical.

The complex valued mean squared error (MSE) is calcu-
lated as follows:

lcomplex
MSE =

1

K
(z− t)H(z− t) =

1

K

K∑
n=1

|zk − tk|2, (11)
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where z ∈ CN and (·)H is the conjugate transpose.
Accordingly, the real-valued implementation is calculated

as follows (corrected by a factor of 2):

lreal
MSE =

1

K
(z
′
− t
′
)
H
(z
′
− t
′
) =

1

K

2K∑
n=1

|z
′
k − t

′
k|2, (12)

where z
′
, t
′
∈ R2K are the stacked output of the real-

valued neural network and the stacked training target, respec-
tively.

In many tasks related to complex signal processing, the ab-
solute phase as well as the scaling of the result may be less
important than the level differences and the phase differences
between signals. For example a beamforming vector W for a
given frequency, which consists of complex scalars and is used
to constructively compose an enhanced signal from STFTs of
individual microphone signals serves just as well as any com-
plex rotation Wejφ of it.

Therefore, we use the negative cosine similarity (NCS) be-
tween complex vectors, where ||z|| =

√
zHz is the vector length

(see appendix for gradients):

lcomplex
NCS = − |zHt|

||z|| · ||t|| , lreal
NCS = − |z

′H
t
′
|

||z′ || · ||t′ ||
. (13)

4. Evaluation
To evaluate CVNNs in comparison to RVNNs, we decided to
use a typical signal processing problem, namely beamforming,
with a known analytic solution. We keep the degrees of free-
dom equal for both network types by setting the number of hid-
den units of the RVNN to be twice as high as for the CVNN.
Stochastic gradient decent with a learning rate of 0.001 and a
momentum of 0.9 was used in all training tasks.

We used 4620 and 1680 utterances from the TIMIT
database [17] for training and cross validation, computed the
STFT representation Stf of clean speech, and multiplied it with
a random complex-valued acoustic transfer function vector Hf

in the sense of the multiplicative transfer function approxima-
tion. Each acoustic transfer function vector contains D = 3
complex random values and corresponds to the random (rever-
berant) transmission paths of the source signal to each of the
D sensors. Additionally, the observations are corrupted with
white noise Ntf with a signal-to-noise ratio (SNR) of 10 dB.
The signal model is therefore:

Ytf = HfStf + Ntf . (14)
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Figure 1: Summarized cross-validation error of 10 differently
initialized networks to calculate the outer product matrix of
TIMIT observations with the mean loss as a continuous line and
the 95% confidence intervals as a shaded area (Task 1).

A classic approach is to use a principal component analysis
(PCA) beamformer [18]. The PCA beamforming vector is ob-
tained by first calculating the observation covariance matrix for
each frequency bin:

ΦY Y (f) =
1

T

T∑
t=1

YtfY
H
tf , (15)

calculating the principal component Wf = P {ΦY Y (f)} and
finally applying the beamforming vector as a scalar product:

Ztf = WH
f Ytf . (16)

Therefore, as a first task, we train both the real- and the
complex-valued network to calculate the outer product t =
YtfY

H
tf of each observation vector. The loss function is set to

calculate the MSE as given in Equation (12) for the real-valued
and (11) for the complex valued neural network. The estima-
tion for the outer product matrix (15) is treated independently
for each time and frequency which effectively leads to a batch
size of F ·T , where F is the number of frequency bins and T is
the number of time frames. All further network parameters are
summarized under Task 1 in Table 4.

Figure 1 shows the cross validation loss in terms of MSE
(Equations (11), (12)) for the real-valued implementation in
blue and the complex valued implementation in red for ten dif-
ferent initializations of the same network architecture (the factor
2 according to Equation (11) is taken into account). It can be
observed, that the variance between different initializations in-
creases during the observations. We can further note, that the
loss for the real valued implementation is higher than for the
complex valued network. How this affects SNR gains, is inves-
tigated subsequently.

In the second task, we train the two networks to calcu-
late the principal component from the complex valued matrix
ΦY Y (f). Since the length of a principal component is arbitrary,
we opted to use the negative cosine similarity as the loss func-
tion (Equation (13)). The other parameters are again listed in
Table 4. It turns out that the difference in cross-validation score
between the complex and real-valued networks is lower. It may
also be observed that the loss is fairly close to the minimum of
−1. Further improvement might be achieved by normalizing
the input to reduce the dynamic range the network has to cover.

In the third task, we stack the previous networks to a deep
architecture with the goal to estimate the beamforming vec-
tor W. The training target is the oracle beamforming vector,
which is obtained by calculating the principal component of the
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Figure 2: Summarized cross-validation error of 10 differently
initialized networks to calculate the PCA vector given the co-
variance matrix of TIMIT observations visualized as in the first
figure (Task 2).
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Task 1: Outer product Task 2: PCA Task 3: Beamformer

RVNN CVNN RVNN CVNN RVNN CVNN

Layer 1 2D → 50 D → 25 2D2 → 50 D2 → 25 2D → 50 D → 25

Non-linearity ReLU SplitReLU ReLU SplitReLU ReLU SplitReLU
Layer 2 50→ 2D2 25→ D2 50→ 2D 25→ D 50→ 2D2 25→ D2

Layer 3 2D2 → 50 D2 → 25

Non-linearity ReLU SplitReLU
Layer 4 50→ 2D 25→ D

Loss function MSE MSE NCS NCS NCS NCS

Table 1: Network configurations for the different tasks and the real and the complex neural network.
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Figure 3: Summarized cross-validation error of 10 differently
initialized networks to calculate the PCA vector given noisy
TIMIT observations visualized as in the first figure (Task 3).

speech-only covariance matrix. Thus, the neural network may
find a better beamforming vector than simply calculating the
principal component of the noisy observation covariance ma-
trix. For the first two layers of the network, each feature vector
is an observation Ytf ∈ CD . Therefore, this part of the net-
work operates independently on each time-frequency slot. The
output of the second layer is then summarized along time:

h
′
f =

1

T

T∑
t=1

htf . (17)

To some extend, the first two layers and the summation are ex-
pected to provide information similar to the covariance matrix
output of Task 1. The following two layers then calculate the
principal component similar to Task 2. It turns out that the dif-
ferences between the real and the complex networks are just as
small as during Task 2. To understand how these loss values
translate into SNR gains, Figure 4 evaluates the enhancement
performance when using the estimated beamforming vector and
Equation (16).

In all these experiments the number of real-valued parame-
ters was the same for the RVNN and CVNN, meaning that the
number of complex parameters is half the number of real pa-
rameters. Nevertheless, due to the complex multiplications dur-
ing the forward and backward steps, a CVNN needs more real-
valued multiplications than a RVNN (more elementary opera-
tions in general). The amount of real-valued additions and the
amount of real-valued comparisons (due to the rectified units)
are the same for both networks.
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Figure 4: Boxplot of the median SNR gain for all simulations
performed with a real-valued and a complex-valued neural net-
work (Task 3).

5. Conclusions
From the presented experiments, we conclude that complex val-
ued neural network do not perform dramatically better than real-
valued networks on the considered tasks, which are intrinsically
complex. Still, they require more multiplications. We therefore
conclude that we can rely on real-valued implementations and
use the real and imaginary part of features as inputs, if complex
regression problems are to be solved. Nevertheless, we promote
the negative cosine loss as a means of penalizing errors in rel-
ative phase and level differences, which provides the desired
invariance with respect to an absolute phase and scaling.

6. Appendix
The gradients for the SplitReLU are given by

∂fsr
∂ Re z

= [Re z > 0],
∂fsr
∂ Im z

= j[Im z > 0], (18)

∇z∗ = Re

{
∇∗fsr∗

∂fsr
∂ Re z

}
+ jRe

{
∇∗fsr∗

∂fsr
∂ Im z

}
. (19)

The gradient of the NCS can be composed of atomic com-
putations, where most notably, the gradient of the absolute value
function a(z) = |z| is given as follows:

∇z∗ =
1

2
ej arg z (∇∗a∗ +∇a∗) (20)
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