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Abstract
In this paper, we address the problem of parameter estimation
for the Total Variability Model (TVM) [1]. Typically, the esti-
mation of the Total Variability Matrix requires several iterations
of the Expectation Maximization (EM) algorithm [2], and can
be considerably demanding computationally. As a result, fast
and efficient parameter estimation remains a key challenge fac-
ing the model. We show that it is possible to reduce the Maxi-
mum Likelihood parameter estimation problem for TVM into a
Singular Value Decomposition (SVD) problem by making some
suitably justified approximations in the likelihood function. By
using randomized algorithms for efficient computation of the
SVD, it becomes possible to accelerate the parameter estimation
task remarkably. In addition, we show that this method is able to
increase the efficiency of the ivector extraction procedure, and
also lends some interpretability to the extracted ivectors.
Index Terms: Total Variability Model, ivector

1. Introduction
Total Variability Model [1] has been widely used in the domain
of audio signal processing as a framework for obtaining a fixed-
dimensional representation for variable length sequences. It has
been successfully applied in a variety of applications including
speaker recognition [1], language identification [3, 4], acous-
tic model adaptation for speech recognition [5, 6], and also for
inferring paralinguistic information such as cognitive load [7].

Despite its popularity, training a TVM is computationally
intensive since it requires several iterations of EM algorithm.
Several ideas have been proposed in order to improve the ef-
ficiency of EM training and ivector extraction, such as pre-
normalization of statistics [8], constant component alignment
and orthogonalization [9], factorized subspace estimation [10]
and Variational Bayes algorithms [11]. However, these methods
are still based on EM and require several iterations.

In this paper, we propose a new algorithm based on SVD to
overcome this limitation. We construct an approximation to the
model likelihood function, and show that it can be maximized
by computing an SVD for a single matrix. The approximations
we make are reasonable when the training data is long in dura-
tion. Although the dimensionality of this matrix is very large,
randomized algorithms can be used in order to obtain the SVD
very efficiently [12]. This eliminates the need for iteration, and
enables us to reduce the complexity of the training procedure
by an order of magnitude.

In addition, SVD provides a ranking of different subspace
dimensions in the form of their corresponding singular values,
which leads to further advantages. First, it eliminates the need
for repeated training when experimentation is necessary over
different values of subspace dimensionality k: the solution can

be obtained by obtaining the SVD for largest k and then truncat-
ing it as necessary. Moreover, the first few subspace dimensions
correspond to the most important factors of variation in the data.
Exploring correlations between them and physically observable
quantities lends some degree of interpretability to the extracted
ivector dimensions.

The remainder of this paper is organized as follows: we
propose an algorithm for approximate likelihood maximization
based on SVD in section 2, followed by a discussion of its ad-
vantages in section 3. Experimental results on RATS Language
Identification (LID) corpus have been reported in section 4 fol-
lowed by conclusion.

2. Parameter Estimation for TVM
Let X = {Xu}Uu=1 be the collection of acoustic feature vectors
in a dataset comprising ofU utterances, where Xu = {xut}Tu

t=1

denotes the feature vector sequence from a specific utterance u.
Let D be the dimensionality of each feature vector: xut ∈ RD .

In the Total Variability Model (TVM), it is assumed that
with every utterance u, there is an associated vectorwu ∈ RK ,
known as the ivector for that utterance, such that the conditional
distribution of xut given wu is a Gaussian Mixture Model
(GMM) with parameters {pc,µuc = µc + Tcwu,Σc}Cc=1

where pc ∈ R,µc ∈ RD,Tc ∈ RD×K and Σc ∈ RD×D .
The prior distribution forwu is assumed to be standard normal:

f(wu) = N (0, I)

Let M0,Mu ∈ RCD denote vectors consisting of stacked
global and utterance-specific component means µc and µuc re-
spectively. Then, TVM can be summarized as:

Mu = M0 + Twu

where T ∈ RCD×K is given as: T =
[

TT
1 . . . TT

C

]T
The parameters pc andM0 are typically obtained by training a
GMM, also known as a Universal Background Model (UBM),
on all available speech data. Let Θ = {T,Σ} denote the re-
maining parameters. Our focus is on efficient estimation of Θ.

2.1. Expectation Maximization

The problem of estimating the matrices T and Σ is usually set
up as a Maximum Likelihood problem:

Θ∗ = argmaxΘ logP (X|Θ)

An estimate Θ∗ that achieves a local maximum of the likelihood
function is then obtained using the Expectation Maximization
(EM) algorithm by treating the ivectorswu as hidden variables.

2.2. Related work

There has been recent work on replacing EM algorithm with
PCA in [13], which is similar to our approach, but there are
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a few key differences. While their approach is motivated indi-
rectly by drawing parallels between linear Gaussian model view
of PCA and EM updates for TVM, we motivate ours directly
from likelihood maximization for TVM. Moreover, the projec-
tion matrix in their case is computed by eigendecomposition of
the covariance matrix, as opposed our approach of using ran-
domized SVD, which is remarkably faster [12].

2.3. Proposed Algorithm: Singular Value Decomposition

To avoid an iterative procedure, we marginalize the likelihood
over ivectorswu, rather than treating them as hidden variables.

2.3.1. Likelihood Function

Just like in the derivation of the EM updates [2], we start by as-
suming that the component associations C are observed, where

C = {Cu}Uu=1 ,Cu = {cut}Tu
t=1 , cut ∈ {1, . . . , C}

Hence, the problem we consider is that of maximizing

L(Θ) = logP (X|C,Θ) =

U∑
u=1

logP (Xu|Cu,Θ) (1)

P (Xu|Cu,Θ) can be obtained by marginalizing overwu:

P (Xu|Cu,Θ) =

∫
wu

P (Xu|Cu,wu,Θ)f(wu)dwu (2)

P (Xu|Cu,wu,Θ) is given by the Total Variability Model:

P (Xu|Cu,wu,Θ) =

C∏
c=1

∏
t:cut=c

N (xut; µc + Tcwu,Σc)

By separating the terms involving T from rest of the expression,
it is possible to factorize P (Xu|Cu,wu,Θ) as follows:

P (Xu|Cu,wu,Θ) = g(Xu,Θ)h(Xu,Θ), where:

g(Xu,Θ) =

C∏
c=1

∏
t:cut=c

N (xut; µc,Σc)

h(Xu,Θ) = exp

[
wT
u

(
TTΣ−1F u −

1

2
TTΣ−1NuTwu

)]
F u =

[
F T
u1 . . . F T

uC

]T
,
F uc=

∑
t:cut=c

(xut − µc) (3)

where Σ,Nu are CD × CD block diagonal matrices
with cth block given by Σc and Nuc I respectively, and
Nuc =

∑
t:cut=c δ(cut − c). Substituting this expression for

P (Xu|Cu,wu,Θ) back in (2), and eventually substituting the
obtained expression back in (1), we get:

L(Θ) = L1(Θ) + L2(Θ) + L3(Θ) (4)

where: L1(Θ) =

U∑
u=1

log g(Xu,Θ),

L2(Θ) =
1

2

U∑
u=1

F T
uΣ

−1T
(
I + TTΣ−1NuT

)−1

TTΣ−1F u,

L3(Θ) = −1

2

U∑
u=1

log |I + TTΣ−1NuT|

The approach we follow for obtaining T∗,Σ∗ that maximize
the likelihood given by (4) is as follows:

• Obtain T∗(Σ) as a function of Σ by maximizing
L(T,Σ) with respect to T while treating Σ as constant

• Obtain Σ∗ by maximizing L(T∗(Σ),Σ)

• Finally, Θ∗ = {T∗(Σ∗),Σ∗}

2.3.2. Estimating T∗(Σ)

Since L1(Θ) is constant with respect to T, we have:

T∗(Σ) = arg max
T

J(T), where J(T) = L2(Θ) + L3(Θ)

Let the Cholesky decomposition of Σ−1 be LLT. Then, we can
express L1,L2 in terms of quantities F̃ u, T̃u as:

F̃ u = N
− 1
2
u LTF u, T̃u = N

1
2
uLTT (5)

L2(Θ) =
1

2

U∑
u=1

(
F̃

T

uT̃u

(
I + T̃T

uT̃u

)−1

T̃T
uF̃ u

)

L3(Θ) =− 1

2

U∑
u=1

log |I + T̃T
uT̃u|

(6)

At this point, the maximization can be greatly simplified if we
can separate terms involving T from the summation over u. To
that end, we make the approximation Nuc ≈ Tupc, which is a
reasonable approximation to make if Tu is large enough, since
Nuc → Tupc as Tu → ∞ by the Law of Large Numbers. For
this approximation, and for large Tu, we get:

T̃u ≈
√
Tu T̃, T̃ = P

1
2 LTT, and

1

Tu
I ≈ 1

T
I

where P is a CD × CD block diagonal matrix with cth block
given by pc I, and T is the average utterance length. Then, by
using the invariance of matrix trace under cyclic permutations,
(6) can be simplified as:

L2(Θ) =
1

2
Tr

[(
U∑
u=1

F̃ uF̃
T

u

)
T̃

(
1

T
I + T̃TT̃

)−1

T̃T

]

L3(Θ) = −1

2

U∑
u=1

log |I + TuT̃
TT̃|

Let F̃ denote a matrix containing F̃ u as columns then:(
U∑
u=1

F̃ uF̃
T

u

)
= F̃F̃T

Let the Singular Value Decomposition (SVD) for F̃, T̃ be:

F̃ = UFDFVT
F , T̃ = UTDTVT

T

where DF ∈ RCD×U and DT ∈ RCD×K are diagonal
with sorted entries: dF1 ≥ . . . dFCD , dT1 ≥ . . . dTK , and
UF ,UT ,VF ,VT are orthonormal: To find T∗, we need to
find U∗

T ,D
∗
T ,V

∗
T that maximize the likelihood. Define:

SF = F̃F̃T, D̃T = DT

(
1

T
I + DT

TDT

)−1

DT
T

Then, L2,L3 can be expressed as:

L2(Θ) =
1

2
Tr
[
SF UT D̃TUT

T

]
L3(Θ) = −1

2

U∑
u=1

log |I + TuD
T
TDT |
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Neither L2(Θ) nor L3(Θ) depend on VT , so without loss of
generality, we can take V∗

T = I. L3(Θ) does not depend on
UT , so we can obtain U∗

T by maximizing L2(Θ). To that end,
we use the following result:

Theorem ([14, Theorem 4.1]). Let A,B be n × n Hermitian
matrices, with eigenvalues αi, βi respectively, both similarly
ordered: α1 ≥ · · · ≥ αn, β1 ≥ · · · ≥ βn. Then:

max
Uunitary

Tr
[
AUTBU

]
=

n∑
i=1

αiβi

Substituting A ← SF , U ← UT
T , B ← D̃T , in the statement

of the theorem, we get:

max
UT unitary

L2(Θ) =
1

2
Tr
[
DFDT

F D̃T

]
The maximum value can be achieved by setting U∗

T = UF .
Substituting it back in J(T), we get the following expression
in terms of dTk:

J(T) =
1

2

K∑
k=1

[
Td2

Fk
d2
Tk

1 + Td2
Tk

−
U∑
u=1

log(1 + Tud
2
Tk

)

]
Taking the derivative with respect to dTk, then making approx-
imations (1 + Td2

Tk
)2 ≈ T 2d4

Tk
+ 2Td2

TK
and 1 + Tud

2
TK
≈

Tud
2
Tk

, and setting to zero, we get:

d∗Tk
≈


√

d2
Fk
UT
− 2

T
if d2

Fk
≥ 2U

0 otherwise
(7)

To summarize, we get:

T̃∗(Σ) = U∗
TD∗

T , T∗(Σ) = ΣLP− 1
2 T̃∗(Σ) (8)

where U∗
T = UF , and the entries of D∗

T are given by (7).

2.3.3. Estimating Σ∗

Let d̄Fk = max(dFk ,
√

2U). Substituting the obtained T∗(Σ)
in the likelihood, we get the following expression for 2J(T):

K∑
k=1

(
d2
Fk

d̄2
Fk
− 2U

d̄2
Fk
− U

−
U∑
u=1

log

[
1 + Tu

(
d̄2
Fk

UT
− 2

T

)])
Here, some approximations are necessary to simplify the ex-
pression. The first term grows almost linearly with d2

Fk,
whereas the other terms reduce logarithmically, so when we
maximize the likelihood, we expect the linear term to dominate,
and push dFk towards a high value. Expecting a large dFk,
we approximate d̄2

Fk
− 2U ≈ d̄2

Fk
− U , and drop the logarith-

mic terms since their contribution can be rendered negligible in
comparison to the first for large dFk. Since we expect F to be
low rank, F̃ would also be low rank, and the summation in the
first term can be increased up to indexCD instead ofK without
a significant effect. Making these approximations, we can get:

2J(T) ≈
CD∑
k=1

d2
Fk

= Tr(F̃F̃T) = Tr

[
Σ−1

U∑
u=1

N−1
u F uF

T
u

]
Substituting in (4), we get the following objective function to
minimize with respect to Σ:

(
where Nc =

∑U
u=1 Nuc

)
C∑
c=1

Tr

[
Σ−1
c

(
SXc −

U∑
u=1

1

Nuc
F ucF

T
uc

)]
+Nc log |Σc|,

SXc =

U∑
u=1

Suc, Suc =
∑

t:cut=c

(xut − µc)(xut − µc)
T (9)

Minimizing with respect to Σc, we get:

Σ∗
c =

1

Nc

(
SXc −

U∑
u=1

1

Nuc
F ucF

T
uc

)
(10)

By algebraic manipulation, (10) can be rearranged to a Positive
Semi-Definite (PSD) matrix:

Σ∗
c =

1

Nc

U∑
u=1

∑
t:cut=c

(xut − X̄uc)(xut − X̄uc)
T,

X̄uc =
1

Nuc

∑
t:cut=c

xut

(11)

2.3.4. Summary of SVD Estimation

Overall, the estimation procedure using SVD has been summa-
rized in the procedure below. Although our derivation is based
on hard component alignment for simplicity, soft posteriors can
be used in practice for computing the statistics.

Procedure TVM-SVD-Estimation
Input : Feature Vectors xut, Posteriors γut
Output: Total Variability Matrix T, Covariance Matrix Σ

1: for u = 1 to U do
2: Collect statistics Nu,F u,Su . Eq (3),(9)
3: Get Σ from Su, F u . Eq (10)/(11)
4: Normalize the statistics F u to get F̃ u . Eq (5)
5: Get SVD of F̃ using randomized algorithms . Sec 3.1
6: Get the Total Variability Matrix T . Eq (8)

3. Advantages of SVD Estimation
3.1. Computational Complexity of Parameter Estimation

Although we have shown that we can obtain the Total Vari-
ability Matrix by computing the SVD of matrix F̃, it is not
immediately clear that this would be a better choice than EM
computationally, especially because the matrix F̃ is of dimen-
sion CD×U , which is typically fairly large. Fortunately, there
are randomized algorithms available that can solve this problem
very efficiently. A summary of various algorithms and the asso-
ciated bounds can be found in [12]. To illustrate the efficiency
of these algorithms, we highlight a few key points:

• Although the outcome is probabilistic, the probability of
failure is a user specified parameter, and can be rendered
negligible (say 10−15), with a nominal impact on the
computational resources required

• Most of the computationally intensive steps in these al-
gorithms are parallelizable, allowing the advantage of
exploiting a large number of parallel nodes, if available

• The computations do not require loading the entire ma-
trix to memory, and can be modified to require only a
single pass over the matrix stored on a disk

3.2. Computational Complexity of ivector Estimation

The MAP estimate of the ivector given model parameters Θ and
utterance statistics F u,Nu is given as:

w∗
u =

(
I + TTΣ−1NuT

)−1

TTΣ−1F u (12)
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By making similar approximations to those made in section
2.3.2, we can potentially simplify (12) to:

w∗
u =

1√
Tu

(
1

Tu
I + T̃TT̃

)−1

T̃TF̃ u (13)

Since T̃TT̃ = DT
TDT is diagonal, matrix inversion is greatly

simplified and enables much faster ivector extraction.

3.3. Interpretability of ivectors
Consider for example the singular values of the matrix F̃ ob-
tained for the Wall Street Journal (WSJ) si284 corpus, shown in
Figure 1. It is apparent that most of the variability in the matrix
is explained by the first few subspace dimensions.
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Figure 1: Singular Values of F̃

For further illustration, first two dimensions of the extracted
ivectors for the WSJ test set eval92, are shown in figure 2. Dif-
ferent speakers are shown by markers of different color, male
and female speakers are shown by circular and triangular mark-
ers respectively. It is clear that just the first two ivector dimen-
sions already capture quite a lot of the speaker variability, and
yield fairly congregated clusters.
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Figure 2: First two ivector dimensions for WSJ eval92 data

Moreover, observing the speaker gender reveals yet another
interesting fact: with the exception of a few utterances from
one speaker, the value of the first ivector dimension is negative
for male utterances and positive for female utterances, indicat-
ing that it is implicitly encoding gender information. In other
words, the model has effectively identified gender as the most
important factor of acoustic variability in the data, even though
no labels are provided during training. By similarly exploring
correlations between speaker metadata and the first few ivec-
tor dimensions, it might become possible to assign them inter-
pretable notions, while also understanding the relative impact
of different factors on acoustic variability.

4. Experimental Results
We conducted experiments for Language Identification (LID)
on the DARPA Robust Automatic Transcription of Speech
(RATS) database. The database consists of audio recordings

Table 1: LID Results

EM SVD-1 SVD-2
Tθ 33.5 hrs 30 min 30 min
Tw 1.13 sec 0.12 sec 1.13 sec
Dur EER ACC EER ACC EER ACC

10 8.30 83.50 8.78 83.60 9.26 81.15
5 10.04 80.80 10.40 80.55 10.94 78.05
3 13.41 72.75 13.59 74.25 14.97 70.55
1 21.59 56.45 22.13 58.35 22.61 54.65

of varying lengths, and corrupted by different noise types of
varying SNRs. Train and test data splits were chosen according
to the description in [7]. The database contains audio from six
classes: five target languages and a class corresponding to 10
non-target languages. The data used for training the Total Vari-
ability Matrix consists of 96000 recordings (16000 from each
class) of 30s each. In addition, there are four datasets, consist-
ing of utterances with length 10s, 5s, 3s, and 1s respectively. For
each of these splits, a labeled training set of 96000 utterances is
available for classifier training, and a test set of 2000 utterances
of the same length is used to evaluate the performance.

For each frame, we obtained 20-dimensional MFCC vec-
tors, concatenated with delta coefficients. A UBM of 2048 com-
ponents, and an ivector model of 400 dimensions were trained
on the 30s dataset. For classification, we trained a Support Vec-
tor Machine (SVM) with a fifth order polynomial kernel. Within
Class Covariance Normalization (WCCN) is used prior to clas-
sifier training for compensating unwanted sources of variability.

The baseline model was obtained by training the Total Vari-
ability Matrix using EM algorithm [2], implemented using the
Kaldi toolkit [15]. The results have been summarized in Table
1. SVD-1 refers to ivector extraction given by (13), whereas
SVD-2 refers to ivector extraction given by (12). The perfor-
mance results for EM and SVD-1 are comparable, with EM be-
ing slightly better in terms of Equal Error Rate (EER), but SVD-
1 being slightly better in terms of classification accuracy (ACC).
The exact but slower version, given by SVD-2, is also slightly
worse, suggesting that maintaining a consistency in terms of the
approximations made during parameter estimation and ivector
extraction is beneficial.

In terms of time taken for parameter estimation (Tθ), how-
ever, there is a stark difference between the EM algorithm and
SVD estimation. Using 16 processors in parallel, the total time
taken for parameter estimation using the EM algorithm (exclud-
ing the time required for feature extraction and posterior com-
putation) was 120,517s (roughly 33.5 hours). Using the same
number of processors, the total time required for SVD estima-
tion was 1807s (roughly 30 minutes). It should also be noted
that we implemented the proto algorithm described in [12], pri-
marily because of its simplicity. However, many faster algo-
rithms have been described in [12], which have the potential to
reduce the computational requirement even further. In addition,
EM was also much slower compared to SVD-1 in terms of av-
erage time taken for ivector extraction (Tw), owing primarily to
the computation of the inverse matrix in (12).

5. Conclusion
We have presented an algorithm based on randomized SVD that
significantly reduces the computation time required for TVM
parameter estimation and ivector computation. It also opens up
a potential opportunity for gaining insights about interpretabil-
ity of the extracted ivectors.
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