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Abstract
Speech is potentially a rich source of biomarkers for de-
tecting and monitoring neuropsychological disorders. Current
biomarkers typically comprise acoustic descriptors extracted
from behavioral measures of source, filter, prosodic and lin-
guistic cues. In contrast, in this paper, we extract vocal features
based on a neurocomputational model of speech production, re-
flecting latent or internal motor control parameters that may be
more sensitive to individual variation under neuropsychological
disease. These features, which are constrained by neurophysi-
ology, may be resilient to artifacts and provide an articulatory
complement to acoustic features. Our features represent a map-
ping from a low-dimensional acoustics-based feature space to
a high-dimensional space that captures the underlying neural
process including articulatory commands and auditory and so-
matosensory feedback errors. In particular, we demonstrate a
neurophysiological vocal source model that generates biomark-
ers of disease by modeling vocal source control. By using the
fundamental frequency contour and a biophysical representa-
tion of the vocal source, we infer two neuromuscular time se-
ries whose coordination provides vocal features that are applied
to depression and Parkinson’s disease as examples. These vo-
cal source coordination features alone, on a single held vowel,
outperform or are comparable to other features sets and reflect
a significant compression of the feature space.
Index Terms: depression, Parkinson’s, neural computational
modeling, vocal biomarkers

1. Introduction
Traditional feature engineering of speech or other modalities,
best embodied by deep neural networks, often take a discrimi-
native approach to machine learning problems. Features may or
may not be interpretable and algorithms are more tuned to op-
timize a performance metric than to yield a model that mecha-
nistically explains the data. Consequently, large, representative
data sets may be needed, and the final result, while potentially
accurate, may yield little insight into the underlying disorder.

In this work, we develop a complementary approach to tra-
ditional feature engineering schemes. Instead of relying solely
on acoustic properties or more interpretable phonological char-
acterizations of speech such as jitter, shimmer, pitch, and for-
mants [1, 2, 3], we present a neurocomputational framework
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Figure 1: Neurocomputational framework for biomarkers.

that aims to model the speech production process of an indi-
vidual with a particular disorder. Within a computational bio-
physical framework depicted in Figure 1, features may reflect
internal or latent model parameters. This approach is a step to-
wards a brain basis for the success of previous biomarkers, to-
wards novel biomarkers, and towards increased clinical accep-
tance of final assessment systems. As an example application,
we develop a neurophysiological vocal source model with two
muscle parameters and their coordination from which we derive
features. We apply these features to depression in the Audio Vi-
sual Emotion Challenge database [4] and to Parkinson’s in the
mPower database [5].

2. Perception-Action (PA) Framework
We view the perception-action cycle as the governing paradigm
for neuromotor control [6]. As illustrated in Figure 1, the cy-
cle contains several elements: a plan, an error computation, a
corrective action, a motor system, and perception. The plan
consists of the goals as well as a preliminary notion of how to
manipulate the motor system to achieve those goals. The motor
system is the effectors such as the vocal folds or articulators in
speech, or legs in walking, or ocular muscles in eye tracking.
The perceptual step observes the outcome of the motor system
which can be the auditory and also the associated tactile and
proprioceptive signals. The perceptual step and the plan dy-
namically interact to create corrective actions that are sent to
the motor system. This is a general framework that applies not
only to speech motor control but to many forms of motor control
including gait analysis and eye tracking as examples.

Computational modeling provides a constrained brain and
motor feature space for exploration. Potential features that may
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be extracted include the inferred neural firing rates of hypothe-
sized areas of brain function for the different components, mus-
cle intensities of the motor system, and the internal error signals
and updates. Under neurological insults, each component of the
perception-action cycle may be differentially affected which re-
sults in potentially distinct signatures that are a combination of
each of the latent features. This provides a step towards charac-
terizing the disorder that is informed by neuroscience and may
provide testable hypotheses on what speech features may be ex-
pected under different insults to the brain. While we have fo-
cused on depression and Parkinson’s disease in this article, our
computational framework can generalize to many neurological
disorders such as traumatic brain injury, autism, multiple scle-
rosis, schizophrenia, and Alzheimer’s to name a few.

Williamson et al. [7] investigated a Spanish Parkinson’s
disorder corpus introducing a new feature that was biophysi-
cally motivated. Specifically, the formant trajectories extracted
from the speech waveform were inputs to the Directions Into
Velocities of Articulators (DIVA) neurocomputational model of
speech motor control [8]. By running DIVA, they estimated
latent articulation parameters that generated the target formant
tracks. Using coordination of these tracks as features provided
a performance gain.

In this paper, we build upon this approach by adopting the
DIVA control architecture and a biophysically motivated model
of the vocal source, with coordination of muscles driving the
vocal folds as measured through a multi-scale cross correlation
technique [9]. We focus initially only on the motor muscle com-
ponents; yet to be explored is a more extensive characterization
of the underlying complex neural motor system.

3. Databases
The depression corpus is derived from the 2013 AVEC set [4].
Depression severity was quantified with the Beck Depression
Inventory II [10] scale, and the range of scores was between
0 and 45 in this corpus. Subjects participated in a variety of
speech tasks, but we only analyze the held /a/ vowel which was
produced at a comfortable pitch, a high pitch, a loud intensity,
and a soft or low intensity. The vowels were manually seg-
mented from the recording. The recording setup was in a quiet,
laboratory environment. A total of 55 subjects pooled from the
train and development subsets had /a/ vowels for analysis.

The Parkinson’s corpus was available through the recently
published mPower Parkinson’s study [5]. The held /a/ vowel
recordings were self-made on a variety of iPhone devices (4S, 5,
5c, 5S, 6, 6Plus) and iPod touch (5G) in a multitude of environ-
ments with varying levels of background noise. Both subjects
who have been diagnosed with Parkinson’s disorder and sub-
jects without a Parkinson’s diagnosis self-enrolled. Due to the
recency of the dataset’s publication, Parkinson’s severity scores
were not available for regression, so we classified samples as
Parkinson’s (PD) or healthy control (HC). We processed a sub-
set of the full mPower dataset (Figure 2) to enforce a level of
homogeneity within our PD group and our HC group. When
noticed, files with artifacts (e.g., dog barks) were removed from
the matched set, but exhaustive manual inspection was not pos-
sible.

4. Vocal Source Model
A novel contribution of this research is a feature set de-
rived from a biophysically inspired model of the vocal source
and computationally plausible neural control mechanism. We

Figure 2: Number of mPower subjects available after each se-
lection stage.

Figure 3: Neurocomputational control framework for the vocal
source. The biophysical source model enters in the forward
model and auditory inversion blocks. Dotted lines and gray
modules are not used in the results.

sought a model of the vocal folds and their control mechanism
in order to derive unobserved but existent muscle activations in
the larynx. This approach is similar to, but substantially more
developed than, Williamson et al. [7] in that we use the same
control system paradigm, but differs in that we focus on the vo-
cal source rather than vocal tract, and we introduce a biophysi-
cally inspired model of the vocal source. We defer a discussion
of the broader implications of this approach until later, and here
focus on implementation.

4.1. Control Framework

We adopted the neurocomputational control scheme hypothe-
sized by Guenther et al. [8] in the Directions into Velocities
of Articulators model. The model, adapted for vocal source
control, is shown in Figure 3. In this scheme, there is an audi-
tory target, which we set as the extracted fundamental frequency
time series of the input speech. The forward model transforms
the unobserved motor space parameters to the observed audi-
tory space. A second component, termed the inverse model,
transforms the error between the observed auditory component
and the produced auditory signal into a feedback motor update.
In the system used for this work, we have omitted the auditory
estimation step and the somatosensory feedback as unnecessary
for illustrating the central theme of using a neurocomputational
model to extract features.

1201



4.2. Implementation

The system is trained in an iterative process to determine the
latent parameters necessary to reproduce the auditory target.
When there is a sufficient match between the auditory target
and the model production, the latent parameters are assumed to
be representative of the true latent parameters of the system. In
our implementation, we have a one dimensional auditory tar-
get, the fundamental frequency, and we have a two dimensional
latent space that nominally represents the neural activation to
the cricothyroid (CT) and thyroarytenoid (TA) muscles of the
larynx.

The CT and TA muscles along with subglottal pressure
and other intrinsic laryngeal muscles influence fundamental fre-
quency [11], but we focus on the CT and TA muscles to capture
their dominant influence while maintaining tractability. The CT
and TA muscles are innervated by the superior laryngeal nerve
and recurrent laryngeal nerve respectively, and both nerves are
branches of the tenth cranial nerve whose nucleus is in the brain-
stem [12]. In the context of the perception-action model, we
understand the neural signals to the CT and TA muscles as the
net contribution of a planned fundamental frequency trajectory
determined by prefrontal cortex, limbic system, and basal gan-
glia integration, and corrective actions based on auditory and
somatosensory error signals. The muscles, acting as the motor
system and our forward model, translate the neural commands
by their interaction with the airstream into a new glottal flow
waveform. The newmuscle state and the acoustic consequences
are perceived and compared to the plan, and the neural activa-
tions are updated as needed.

Our forward model is inspired by the Titze and Story bio-
physical model [13], and we use its computational implementa-
tion and extension by Zañartu [14]. We created a mapping of the
CT and TA values to the fundamental frequency estimated by a
peak picking algorithm of a generated glottal flow waveform
for a generic laryngeal system. We approximated the mapping
with a quadratic polynomial to quickly evaluate produced fun-
damental frequency for given CT and TA values because solv-
ing the differential equation governing glottal flow is computa-
tionally infeasible for seconds worth of speech. Furthermore,
with a closed form, differentiable forward model, we were able
to quickly compute an inverse of the forward model. We took
partial derivatives of the fundamental frequency with respect to
the two muscle activations to create a Jacobian matrix, and used
the Moore-Penrose inverse of a matrix (A† ≡ (ATA)−1AT )
in MATLAB (Natick, MA) to create a pseudo-inverse. The
pseudo-inverse of the Jacobian converts error signals in sensory
space to corresponding motor changes.

We used Praat to extract the fundamental frequency (f0) tra-
jectory from the vowel waveform [15], shifted it to our model’s
f0 range, and input the trajectory to our vocal source model to
infer the hidden CT and TA activation time series. Then we per-
form multiscale correlation of the CT and TA time series jointly
and individually after Williamson et al. [9] to extract the eigen-
values that are our neurocomputational source (NCS) features.
The joint analysis (Figure 5, NCS) yields 84 features, and each
individual analysis (NCSct and NCSta) yields 42 eigenvalues.

4.3. Muscle Activation

An example of the fundamental frequency extracted from the
waveform (True), the model-generated fundamental frequency
(Model), and the inferred CT and TA muscle activations are
given in Figure 4. We acknowledge the strong correlation be-
tween the inferred CT value and the fundamental frequency and
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Figure 4: True and model-generated fundamental frequency
(top) and inferred CT and TA muscle activations (bottom).

argue that this is reasonable. Mathematically, the correlation
occurs because the gradient of the fundamental frequency sur-
face is strongly aligned with CT, so small changes in muscle
activation will impact fundamental frequency most when the
CT muscle is changed. The gradient’s alignment is consistent
with computational simulations of the two muscles in [11] and
is consistent with vocal source physiology.

The CT, when tensed, pulls the cricoid and thyroid carti-
lage to directly tense the vocal cords and therefore increase fun-
damental frequency. The CT has a larger influence than the
TA on changes in fundamental frequency because the CT di-
rectly regulates vocal fold tension whereas the TA has an indi-
rect effect. To understand the difference in magnitude of influ-
ence of the two muscles, we appeal to the body cover model
of the vocal folds that describes the vocal folds as a muscular
body loosely connected to a covering with different mechanical
properties than the body. The TA may differentially slacken the
cover component of the model while increasing the tension of
the body. Depending on the net tension increase or decrease of
the body cover system, the fundamental frequency may increase
or decrease [16, 17]. Ex vivo laryngeal stimulation experiments
confirm the dominant role of the CT muscle and the nuanced
role of the TA muscle [18].

5. Machine Learning
5.1. Depression Prediction

To predict depression severity, we use the extremely random-
ized trees (ERT) regression algorithm implemented in scikit-
learn [19]. ERT is an ensemble learning method in which mul-
tiple decision trees are constructed and their performance com-
bined. ERTs make no statistical assumptions about feature de-
pendence, can be used for classification and regression, and em-
pirically have been successful in a range of applications [20].
We randomly split our dataset into a train set containing approx-
imately 80 percent of the subjects and a test set containing the
remaining subjects. We build the regression model on the train
set and evaluate on the test set. We average across all vowels
and all sessions to achieve a final predicted subject score and
we compare against the average session score for the subject.
We repeat the cross validation 100 times.

We compare our NCS features against the 6553 features
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Figure 5: The NCS features have the highest median
performance in depression and have a median above
demographic (meta) data in Parkinson’s.

from Opensmile (OS) [21] and against the 339 Voice Analy-
sis Toolbox features (VATBX) from Tsanas et al. [22, 23, 24].
Opensmile and VATBX have respectively been used in depres-
sion and Parkinon’s assessment. The OS features consist of
a core set of descriptors such as spectral band statistics, fun-
damental frequency, and mel frequency cepstral coefficients
and their derivatives that are augmented by numerous summary
statistics including the min, max, mean, percentiles, and ranges.
The VATBX features emphasize statistical characterization of
the source with jitter, shimmer, Teager energy operator, glottal
quotient, and entropy measures, but also includes mel frequency
cepstral coefficients. We also compare to a multiscale correla-
tion analysis of the fundamental frequency that is input to the
neurocomputational model (F0x, 42 features). The “fuse” fea-
ture set is the concatenation of all the individual feature sets.

5.2. Parkinson’s Detection

We follow a nearly identical approach for Parkinson’s as with
depression, but we use the ERT algorithm for classification.
Each vowel from each subject contributes one sample to the per-
formance calculation per each of the 100 test iterations. We also
include age and gender information (meta) in each speech fea-
ture set in addition to testing the meta information alone. Age
and gender were not released with the AVEC database.

6. Results
For AVEC, we report the fraction of variance explained (FVE).
FVE is a normalized mean square error (FVE ≡ 1 −
MSE/σ2truth) that is upper bounded by 1 (best) but not lower
bounded. A FVE of zero is obtained by predicting the mean of
the test set, but a FVE less than zero can be obtained if predic-
tions are worse than if the mean had been used. For mPower,
we report the F1 score (F1 ≡ 2 · PR · RC/(PR + RC)). Pre-
cision, PR, is the probability of a declared Parkinson’s sample
belonging to a Parkinson’s subject, and recall, RC, is the prob-
ability of a Parkinson’s sample being declared as a Parkinson’s
sample. The F1 score varies between 0 and 1 (best).

Figure 5 contains the median (center line) and 25th and
75th percentiles (box edges) of the test iterations. For AVEC, a
FVE of zero is a baseline that corresponds to predicting the av-

erage depression score. For mPower, we use the age and gender
attribute as the baseline feature set because, to our knowledge,
no previous speech baseline exists.

7. Discussion
In depression, the neurocomputational source features (NCS)
appear to contribute predictive power, and in the mPower set,
NCS, VATBX, and OS have medians above a baseline system
that uses only age and gender information. Both results imply
speech has some discriminatory power, and this is consistent
with previous studies. The neurocomputational source features
appear to provide greater relative advantage on the depression
set than the Parkinson’s set whereas the VATBX features seem
to be most useful for Parkinson’s. OS’s poor performance in de-
pression may reflect overfitting to the training set with its large
number of features.

The NCS features have a median performance above
VATBX in depression. The VATBX features are source features,
but they are statistical quantities that do not appear to generalize
across disorders. We hypothesize that the NCS model is detect-
ing a fundamental neural dysfunction rather than a statistical
aberration. Also, NCS has a higher median than F0x, NCSta,
and NCSct in depression, so we hypothesize that a biophysical
model that considers coordination across components may al-
low a more complete description of the disorder than individual
neural signals.

Potential avenues of expansion for the lower level neural
physiology include additional models for the other intrinsic la-
ryngeal muscles, respiratory muscle control of the subglottal
pressure, and excitation-contraction muscle dynamics. Models
for higher level control include prosodic planning for affective
vs linguistic prosody, limbic system influence on plans under
depression, and the changes due to the basal ganglia’s degrada-
tion under Parkinson’s.

8. Conclusions
Our investigation demonstrated a unique approach to identify-
ing and utilizing vocal features in held /a/ vowels for assess-
ing depression and Parkinson’s. We presented a neurocom-
putational framework for biomarker discovery in which neu-
ral physiology and biomechanical principles are used to map
low dimensional feature data into a higher dimensional but con-
strained space. While our examples were limited to the speech
source for depression and Parkinson’s, this general paradigm
has broad applicability to neuroscience and physiological sta-
tus monitoring applications. The framework naturally admits
multi-modal integration, so such diverse metrics as functional
MRI times series, gait accelerometry data, and speech can be
unified. By combining medical knowledge with observations,
we can bring forth new sets of features via the computational
models that may be more discriminative and sensitive than tra-
ditional approaches as well as provide directions for treatment
and a better understanding of mental or physiological disorders.
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