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Abstract
Mispronunciation detection is an important component in a
computer-assisted language learning (CALL) system. Many
CALL systems only provide pronunciation correctness as the
single feedback, which is not very informative for language
learners. This paper proposes a context aware multilayer frame-
work for Mandarin mispronunciation detection. The proposed
framework incorporates the context information in the detection
process and providing phonetic, tonal and syllabic level feed-
back. In particular, the contribution of this work is twofold: 1)
we propose to use a multilayer mispronunciation detection ar-
chitecture to detect and provide mispronunciation feedback at
the phonetic, tonal and syllabic levels. 2) we propose to incor-
porate the phonetic and tone context information in mispronun-
ciation detection using vector space modelling. Our experiment
results show that the proposed framework improves the mispro-
nunciation detection performance in all three levels.

Index Terms: automatic speech recognition (ASR), human-
computer interaction (HCI), computational paralinguistics,
computer-assisted pronunciation training (CAPT), computer-
assisted language learning (CALL)

1. Introduction
Globalization has increased the needs for people to acquire new
languages. Computer-assisted language learning (CALL) sys-
tems can assist language learners with automated feedback, al-
lowing them to diagnose, practise and correct language errors at
their own pace. Feedback provided by a CALL system can be
categorized into two types: (1) Segmental feedback, which fo-
cuses on the pronunciation accuracy of the individual phonetic
units [1]; (2) Suprasegmental feedback, which focuses on the
rhythm, stress, and intonation of the non-native speech [2, 3].
This study focuses more on segmental level Mandarin mispro-
nunciation detection, aiming to provide more informative feed-
back to language learners.

Pronunciation error patterns in non-native speech can be an-
alyzed to facilitate automatic mispronunciation detection. In
[4], linguistic knowledge is utilised to help the mispronuncia-
tion modelling for Japanese learners of Mandarin. Data-driven
approaches are used to derive pronunciation error patterns au-
tomatically in [5, 6], where the error patterns are then used to
adapt the native speech trained automatic speech recognition
(ASR) system to improve the performance of mispronunciation
detection. Phonological rules are extracted from the speech of
non-native speakers, and they are used for extending the recog-
nition network for mispronunciation detection [7]. Phone level
context [8] has been incorporated in English pronunciation error
pattern discovery.

Various features have been explored for mispronunciation

detection. Acoustic and prosodic features, such as voicing, ar-
ticulation rate and duration are used for pronunciation error de-
tection [9]. Tone nucleus can be extracted with vowel landmark
detection [10] for Mandarin tone recognition. The landmark of
nasal codas in Mandarin are analysed for pronunciation error
detection [11]. Word level F0 modeling technique is used in
automatic assessment of non-native speech [12]. Acoustic sim-
ilarity of the non-native speech [13] are extracted for detecting
mispronunciation.

The advancement of automatic speech recognition has con-
tributed to that of mispronunciation detection. Many CALL
systems improve their performance by adopting Deep Neural
Networks (DNN) [14, 15, 16] in acoustic modelling. Goodness
of Pronunciation (GOP) and its derivatives have been widely
adopted in pronunciation quality assessment [17]. Confused
phoneme sets are used in GOP calculation to derive better confi-
dence scores [18]. An aligned GOP method is proposed in [19]
for Mandarin mispronunciation detection. Posterior probability
vectors can be used to detect phone level mispronunciation for
Mandarin [20]. In our previous work, we proposed the use of
Goodness of Tone (GOT) [21] for Mandarin tone recognition.

It is found that many mispronunciation detection systems
are focused only on the segment itself, while the context in-
formation is neglected. However, it is generally agreed that the
pronunciation of the individual speech unit is greatly affected by
co-articulation. The co-articulation effect is not only observed
in phonetic units, it can also occur across phonetic or syllabic
units, like in the case of tone sandhi. In this work, we propose to
incorporate the context information of different levels in Man-
darin mispronunciation detection. We explore the way to incor-
porate phone and tone level context information by using the
phone co-occurrence probability and vector space modelling.

To provide informative feedback to language learners, we
propose a multilayer framework which models the different
types of pronunciation errors separately. First we focus on
the phone level mispronunciation detection without considering
the tone, secondly the discriminative tone models are trained
for tone level mispronunciation detection, lastly the phone and
tone level detection results are combined to derive syllable level
feedback.

2. Mandarin Mispronunciation Detection
Mandarin Chinese is a monosyllabic language, where each Chi-
nese character constitutes a single syllable. Hanyu Pinyin is one
of the most widely adopted writing systems to romanize Chi-
nese characters. Figure1 shows an example of Chinese Pinyin
SHAN1. It is the Pinyin form of Chinese character meaning
mountain or hill, it consists of an initial (SH), final (AN) and
a tone (1). There are five tones in Mandarin Chinese: Tone
1 (high), Tone 2 (rising), Tone 3 (falling then rising), Tone 4
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Chinese character

shan1
Hanyu Pinyin Phone string

SH AA1 N1

initial final tone(Mountain, hill)

Figure 1: An example of Chinese presentation

(high then falls) and Tone 5 (neutral or lack of tone). Since
Tone 5 is neutral and has no specific contour, we focus on the
mispronunciation of tone 1-4 in this work.

2.1. Mandarin syllable and pronunciation error
In this work, initials and finals are further broken down into
smaller acoustic units: phones. Hence syllable SHAN1 can be
represented by a phone string SH AA1 N1. A non-native speaker
could make three types of mispronunciation at the syllable level:

1) Phone error only: the syllable is phonetically wrong but
has correct tone. For example, SH AA1 N1 is mispronounced as
S AA1 N1.

2) Tone error only: the speaker pronounced the phones cor-
rectly, but the tone is produced wrongly. For example, SH AA1
N1 is mispronounced as SH AA4 N4.

3) Both phonetic and tone errors: the speaker made both
phonetic and tone errors at the same time. For example, SH
AA1 N1 is mispronounced as S AA4 N4.

2.2. Goodness of Pronunciation (GOP)
Our baseline system adopts the Goodness of Pronunciation
(GOP) method for mispronunciation detection. GOP [17] is a
phone level confidence measure to gauge how good a particu-
lar phone is pronounced compared to a native speech trained
model. For segment t, the GOP score for each phone vi in
phone inventory V can be derived as

G(i, t) =
1

dvi,t

P (O|vi)P (vi)∑
q∈V P (O|q)P (q)

(1)

where O is the acoustic observation; d is the number of frames
the phone vi spans; P (O|vi) stands for the likelihood of the ob-
servation vi (it can be obtained by performing forced alignment
with the canonical transcription);

∑
q∈V P (O|q) is the likeli-

hood summation of all the phones in the phone inventory V ,
often derived from phone loop decoding.

With GOP scores for each phone, the mispronunciation de-
tection is performed by comparing the GOP score with a set of
phone dependent thresholds.

2.3. Multilayer mispronunciation detection
Mandarin tones typically have a longer duration compared to
phones. Tonal information is presented throughout the syllable
final. For instance, in the syllable SH AA1 N1, tone 1 spans
across the two phones: AA and N.

With the differences between phone and tone in mind, we
propose a multilayer mispronunciation detection framework to
capture the characteristics of phone and tone separately, and
then combine them together for syllable level error detection.

Figure 2 illustrates the proposed multilayer mispronuncia-
tion error detection framework. In the first layer, pronunciation
of phones are assessed regardless of their tone label, i.e., phones
with the same phonetic symbol but different tone are modelled
together. In the second layer, regardless of the phone, we con-
solidate the phones that carry the same tone label in the same
model. In the last layer, the outputs of the phone and tone layers
are combined to derive syllable level error detection results.
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Figure 2: Multilayer mispronunciation detection using Context
aware phone vector (CAPV) and Context aware goodness of
tone (CGOT)

2.3.1. Context aware phone vector (CAPV)
Since it is generally agreed that the pronunciation of the in-
dividual speech unit is greatly affected by co-articulation, the
mispronunciation detection should benefit from the context in-
formation. We propose to use the phone and tone co-occurrence
vector to capture context information. This is inspired by the
success of the phonotactic feature and use of vector space mod-
eling in language recognition [22, 23, 24]. One advantage of
the vector representation is that the interaction of each dimen-
sion can be captured in the modelling process.

Without losing generality, Figure 2 shows a syllable which
consists of 3 phones. The phone identities and boundaries are
obtained from forced alignment. For the phone in segment t2,
its unigram phone vector UV can be composed by concatenat-
ing the GOP score of every phone in the phone inventory V , as
shown in Eq. 2.

UV = [G(1, 2) G(2, 2) G(3, 2) ... G(v, 2)] (2)

BV = [B(1, 1) B(2, 1) ... B(v, 1) ... B(v, v)] (3)

CAPV = [UV BV ] (4)

To capture the context information, we calculate the co-
occurrence of the phone in t2 and t1. The bigram posterior
probability vector can be obtained by Eq. 3, where

B(i, j) = G(i, 1)×G(j, 2) (5)

it is the product of GOP of phone vi in this segment t2 and
GOP of phone vj in the previous segment t1. It represents the
co-occurrence probability of phone vi being followed by vj .
For a phone at the beginning of a syllable, the end phone of the
previous syllable is taken as its previous context.

In this way, a context aware phone vector (CAPV) can
be obtained by concatenating the unigram (Eq.3) and bigram
(Eq.4) vectors as shown in Eq. 4. For a phone inventory of
size n, the dimension of the context aware phone vector will be:
n+ n2.

2.3.2. Context aware GOT
In our previous work, we proposed to use Goodness of Tone
(GOT) [25] for Mandarin tone recognition. GOT exploits com-
peting tonal phones which differ only in tonal label but are the
same in phonetic labels. In this paper, we extend the GOT to
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Table 1: Number of phone and syllable in test set, w/t (with
tone), wo/t (without tone)

Data syllable phone
correct wrong correct wrong

French w/t 2725 2429 9876 4597
French wo/t 4727 427 13914 559

Russian w/t 3958 1376 11484 2529
Russian wo/t 4621 460 13553 460

English w/t 4972 639 14692 1100
English wo/t 5391 220 15450 342

Context aware GOT (CGOT) following the similar concept as
that of the context aware phone vector (CAPV).

The difference between CGOT and CAPV is the content of
the phone inventory. In CGOT, the phone inventory consists
of only 4 tones. For each segment, the phone inventory only
includes those phones with the same phonetic representation but
carry different tones. Hence the unigram of a CGOT is the GOP
of phones with tone 1 to 4, and the tone context is captured by
the co-occurrence probability of the competing tones, as in Eq.
3. Since the tone inventory has size of 4, the vector dimension
of the CGOT will be 4 + 42 = 20.

For a given syllable, the CGOT vectors of the same syllable
final are summed to form a tone vector for that syllable final.
The tone vectors with the same tone labels are used for tone
model training.

2.3.3. Mispronunciation detection for syllable
As illustrated in Figure 2, the phone level detection and tone
level detection outputs are combined in the last layer to derive
syllable level detection results. In the combination process, the
same tone label derived from tone level detection is assigned to
every phone in the syllable final.

3. Experimental setup
3.1. Corpora
3.1.1. Native Mandarin Corpus
A high performance automatic speech recognition system is
crucial for mispronunciation detection. In this work, a deep
neural network based acoustic model [25] is trained from the
King-ASR-118 mobile speech corpus [26]. The DNN model
has 5 hidden layers, 175 tone dependent phones and 8,537 tied
states. To capture the characteristics of microphone channel and
reading-style speech, an in-house reading speech corpus is used.
This corpus is recorded from 450 Mandarin speakers in Beijing
and Shanghai in China. Each speaker reads 350 utterances and
each utterance has 8 characters on average.

3.1.2. Non-Native Mandarin Corpus: iCALL
The non-native speech corpus used in this study is the iCALL
corpus [27]. In this corpus, 305 beginner learners of Mandarin
Chinese were asked to read 300 Pinyin prompts.

A subset of iCALL corpus is split into three portions, train
set for acoustic model training, development set for parameter
tuning and test set for evaluation, with 237, 30 and 12 speak-
ers respectively. The development and test set are randomly
selected from the dominating languages of the 3 family groups:
10 American English speakers from the Germanic family, 10
French speakers from the Romance family, and 10 Russian
speakers from the Slavic family. The test set consists of speech
of 4 speakers each from the American English, French and Rus-

Table 2: Distribution of each tone in test set

Data Tone 1 Tone 2 Tone 3 Tone 4
French 1834 1043 937 1340
Russian 1721 1397 855 1629
English 1661 1317 1006 1797

Error
detection

True test
True

False
False Rejection
Rate (FRR)

Error
detection

False test
True

False

False Acceptance
Rate (FAR)

Identify what’s 
wrong

True

Diagnostic Error
Rate (DER)

False

Average Error Rate
(AER)

Figure 3: Performance measurements

sian speakers, and there’s no speaker overlap between develop-
ment and test sets.

Table 1 shows the statistics of the test set. The number of
syllable and phone of each language and the overall numbers
are presented. The determination of correct and wrong pronun-
ciation is based on the manual transcriptions. Both statistics
of with tone (w/t) and without tone (wo/t) are shown. Table 2
shows the distribution of tones in the test sets, the number of
syllable for each tone in each language group are reported.

3.2. Performance measure
In this paper, 4 measurements are used to evaluate the mispro-
nunciation detection performance, as illustrated in Figure 3.

1) False Acceptance Rate (FAR): the percentage of mispro-
nounced tests that system failed to detect (also called miss de-
tection);

2) False Rejection Rate (FRR): the percentage of correctly
pronounced tests that system erroneously detected as mispro-
nunciation (also called false alarm);

3) Diagnostic error rate (DER): the number of the mispro-
nounced tests that are erroneously diagnosed, divided by total
number of correctly detected mispronunciation [6, 7];

4) Average error rate (AER): the average of the previous 3
error rates;

In practical CALL systems, the FRR and DER are consid-
ered relatively more important than other measurements. A sys-
tem with high false rejection rate (FRR) may discourage the
learner to continue his study. On the other hand, a system with
high detection error (DER) will give user incorrect feedback
about the pronunciation. This is not desired as it might mislead
the learner to practise with wrong pronunciation.

4. Experiment results
Our baseline system adopts the GOP based method: after forced
alignment, the GOP score for each phone is derived and it is
compared to a pre-defined threshold. A set of phone dependent
thresholds are derived by maximizing the mispronunciation de-
tection performance on the development set.

The results of the GOP baseline system are shown in Table
3. Results of with tone and without tone are reported. The de-
tection error and average error are increased significantly when
tone is considered.

4.1. Context aware phone vectors (CAPV)
In this work, the phone inventory size is 43 when tone is not
considered. Note that an CAPV vector is a sparse vector, as not
all the phones are presented in every decoding hypothesis. For
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Table 3: GOP based mispronunciation detection performance,
w/t (with tone), wo/t (without tone)

Test FAR FRR DER AER
phone wo/t 19.10 11.35 25.34 18.60
phone w/t 13.97 21.72 40.54 25.41

syllable wo/t 13.30 22.78 44.87 26.98
syllable w/t 11.63 37.03 57.01 35.22

Table 4: CAPV based mispronunciation detection, all results do
not consider tone (wo/t)

Test FAR FRR DER AER
phone unigram 19.53 11.07 25.20 18.60
phone bigram 21.08 10.22 23.09 18.13

syllable unigram 13.90 22.29 43.55 26.58
syllable bigram 15.20 21.15 41.75 26.03

each phone, an SVM model is trained using the CAPV vectors
of that phone from the development set. The phone vector of
the test phone is evaluated on the corresponding model. The
operation thresholds are decided with development set.

Figure 4 shows the Detection Error Tradeoff (DET) curve
which compares the phone level mispronunciation performance
of the unigram phone vector and bigram phone vector. The DET
curve illustrates the tradeoff between FAR (x-axis) and FRR (y-
axis). It is clearly shown that the bigram phone vector gives
better performance in phone mispronunciation detection.

Table 4 shows the CAPV performance on the operation
thresholds (obtained on the development set). Both phone and
syllable level results are reported. Comparing the results in Ta-
ble 4 with the tone independent results (without tone wo/t) in
Table 3, it is clearly shown that the CAPV methods decreases
both DER and FRR. This indicates that CAPV have higher abil-
ity in detecting mispronunciations than GOP based method.

Between unigram and bigram phone vectors, we see that bi-
gram CAPV offers more consistent reduction of FRR and DER
than unigram one. There is a trade off between the FRR and
FAR: as FRR decreases, FAR increases. As discussed in Sec-
tion 3.2, FRR and DER are relative more important in practical
applications. This confirms that incorporating context informa-
tion improves the mispronunciation detection performance.

4.2. Context aware GOT (CGOT)
Table 5 compares the tone error detection accuracy using GOT
and CGOT. The overall tone detection accuracy and the break
down results for native speakers of each L1 are presented. The
CGOT method outperforms the GOT method on the overall tests
and also on utterances of the Russian and American English
speakers.

Although CGOT improves the overall tone recognition per-
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Figure 4: Phone level mispronunciation detection with CAPV

Table 5: Tone detection accuracy of GOT and CGOT

ACC (%) Tone 1 Tone 2 Tone 3 Tone 4
French GOT 72.68 55.60 52.79 68.80
French CGOT 75.68 53.02 51.40 69.28

Russian GOT 78.15 77.38 47.37 81.61
Russian CGOT 81.23 79.46 51.23 83.52

English GOT 80.25 82.74 58.45 90.60
English CGOT 84.59 83.69 64.31 90.47

All GOT 78.21 74.13 53.76 82.76

All CGOT 81.37 75.23 55.53 83.39
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Figure 5: Average error rate (AER) for utterances of different
lengths

formance for French speakers, there are performance drop for
tone 2 and 3 on French utterances. One possible reason is that
if the error patterns are inconsistent, suboptimal performance
might be observed due to training/testing mismatches [22, 23].
Since French lacks lexical stress, French speakers have more
trouble producing lexical tones compared to speakers of other
L1 like English [27]. As Tone 2 and Tone 3 are the most confus-
ing Mandarin tonal pairs, we suspect French speakers are more
likely to produce inconsistent tonal sequences when Tone 2 and
3 are involved, potentially explaining the dip in performance.

4.3. Combining CAPV and CGOT
The output of the phone and tone level detection results are
combined for syllable level detection. All the final phones in
the syllable are assigned the same tone, which is obtained from
tone detection. Figure 4 compares the average error rate (AER)
of the baseline (GOP based method) and proposed system by
utterance length (2 syllables, 2-4 syllables and long utterances).

The results show that the proposed multilayer framework
improves the mispronunciation detection performance. It is
also found that the performance drops with the increasing of
the utterance length. This proves our assumption that the co-
articulation plays an important role in mispronunciation detec-
tion, while incorporating the context information improves the
mispronunciation detection.

5. Conclusion
We proposed a multilayer mispronunciation framework for
Mandarin mispronunciation detection. The detection is first per-
formed on phonetic level, followed by the tone level, and the
output of the two levels are combined in the last level to pro-
vide syllable feedback. In both phonetic level and tone level, we
proposed the incorporation of context information through vec-
tor space modelling. Our experimental results have shown that
our proposed method outperforms the conventional GOP-based
method for pronunciation error detection. Incorporating con-
text information improves the mispronunciation performance in
most cases.
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