
Memory-efficient modeling and search techniques for hardware ASR decoders

Michael Price1,2, Anantha Chandrakasan2, James Glass1

1Computer Science and Artificial Intelligence Laboratory
2Microsystems Technology Laboratory

MIT, Cambridge, MA, USA
pricem@mit.edu, anantha@mtl.mit.edu, glass@mit.edu

Abstract

This paper gives an overview of acoustic modeling and search
techniques for low-power embedded ASR decoders. Our de-
sign decisions prioritize memory bandwidth, which is the main
driver in system power consumption. We evaluate three acoustic
modeling approaches–Gaussian mixture model (GMM), sub-
space GMM (SGMM) and deep neural network (DNN)–and
identify tradeoffs between memory bandwidth and recognition
accuracy. We also present an HMM search scheme with WFST
compression and caching, predictive beam width control, and a
word lattice. Our results apply to embedded system implemen-
tations using microcontrollers, DSPs, FPGAs, or ASICs.

Index Terms: speech recognition, neural networks, fixed-point
arithmetic, embedded systems

1. Introduction
Bringing ASR capabilities to small or portable devices requires
attention to computational efficiency. Using a more efficient
processor, whether a low-voltage DSP or a specialized ASIC,
significantly reduces the energy used by arithmetic operations
on the chip. There is some memory (i.e. caches) integrated on
these chips, but it is not enough to store large ASR models–
typically 100+ MB for an acoustic model and search graph.
However, accessing an external memory such as DRAM or flash
remains comparatively expensive [1]. Any attempt to reduce
system power must reduce the amount of data exchanged with
this external memory.

This paper explains the most helpful techniques we iden-
tified to perform speech recognition in these constrained envi-
ronments. Acoustic model comparisons (Section 2) show that
DNNs provide good accuracy even when the number and preci-
sion of parameters are limited. Search techniques that accom-
modate memory limitations are presented in Section 3.

2. Acoustic model
We are operating within the conventional HMM framework for
ASR, with a WFST decoding graph [2]. The acoustic model has
to evaluate the likelihood of input features yt with respect to a
set of distributions p(y|i), where i is the index of an acoustic
state or senone. The accuracy of likelihoods directly impacts
the search workload and word accuracy of a recognizer.

The general trend in ASR research has been to leverage
growing compute resources and datasets to train increasingly
elaborate models. Implementers of low-power ASR systems
cannot blindly follow this trend. Instead of exclusively pursuing
accuracy, we ask a slightly different question.

2.1. What is the most accurate acoustic model with 1 MB of
parameters?

Until 2010, most ASR systems used Gaussian mixture models
(GMMs) to specify each senone distribution. The community
has since shifted to deep neural networks (DNNs), including
convolutional and recurrent networks [3]. Povey et al. also de-
veloped a subspace GMM (SGMM) framework that improves
accuracy over GMMs [4]. It was unclear whether the advan-
tages of DNNs would be maintained in memory-limited imple-
mentations, so we characterized the tradeoff between WER and
memory bandwidth for GMM, SGMM, and DNN models.

We used Kaldi [5] to train recognizers for several ASR
tasks. To model the accuracy and bandwidth of our hardware-
oriented algorithm changes, we constructed a separate ASR
decoder in C++ and performed comparisons with a speaker-
independent recognizer on the WSJ [6] dev93 task. The recog-
nizer’s pruned trigram LM (bd tgpr in the Kaldi recipe) has
a vocabulary of 145k words and 1.47M N-grams; the resulting
WFSTs have 9.2–9.8M states and 22.2–23.6M arcs, depending
on the number of acoustic states.

2.1.1. Gaussian mixture model (GMM)

The GMM models each distribution as a weighted sum of multi-
variate normal distributions over y. With single-precision float-
ing point values, a typical GMM acoustic model occupies 50
MB; naive evaluation at 100 fps would require 5 GB/s of mem-
ory bandwidth. This can be reduced by compressing the GMM,
or by not evaluating the entire model on every frame.

One way to shrink a GMM is to use fixed-point mean and
variance coefficients with reduced precision. With a nonlinear
quantizer, acceptable accuracy can be obtained with as few as 5
bits for the mean and 3 bits for the variance [7].1 Some hard-
ware architectures can also evaluate the distributions for multi-
ple frames in parallel [8], in exchange for longer latency: the
first frame is not evaluated until features for a batch of frames
have been loaded. The local memory required by a GMM is
then dominated by the storage of likelihood results. Assuming
a fixed memory size (in this case 1 Mb) and precision (32 bits),
there is a tradeoff between the number of distributions and the
number of frames that can be evaluated in parallel. Taking this
into account, the performance of several hyperparameter com-
binations is shown in Figure 1. There is a steep tradeoff between
memory bandwidth and recognition accuracy; this is generally
true for all three modeling frameworks.

1Unless the feature space has been whitened, separate quantizers
must be estimated for each feature dimension.

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-2871893



Figure 1: Bandwidth/accuracy tradeoff for GMM acoustic mod-
els of different model size and quantization depth.

2.1.2. Subspace Gaussian mixture model (SGMM)

The SGMM is a collection of GMMs whose parameters vary
in a low-rank vector space relative to a universal background
model, or UBM [4]. Each distribution is modeled as follows:

P (yt|i) =
Mi−1∑

m=0

kim

C−1∑

c=0

wcimN (y;μcim,Σc)

μcim = Mcvim

wcim =
expwT

c vim∑C−1
c′=0 expw

T
c′vim

where the vectors vim describe the location of parameters for
distribution i in a low-rank subspace, and Mc and wc define the
subspace for UBM component c. The second level of mixing,
performed by the weights kim, accounts for different ways that
a single phonetic unit can be realized (i.e. depending on con-
text). We exploit two opportunities for bandwidth reduction:

1. It is possible to store global parameters (i.e. UBM) lo-
cally and fetch a subset of the state-specific parameters
for each evaluation.

2. “Gaussian selection” can be performed to prune the set
of mixture components for each frame.

The quantization and parallelization techniques that we
used for GMMs also apply to SGMMs. For a fair compari-
son, the 1 Mb local memory is split between likelihoods and
intermediate results, reducing the number of frames that can be
evaluated in parallel. Figure 2 shows the bandwidth/accuracy
tradeoff for different model dimensions. All models used a 400-
component UBM and selected the top 3 components per frame.

2.1.3. Neural network (NN)

A neural network is a sequence of layers that operate on real-
valued vectors. Each layer l performs an affine transformation
of its input followed by an element-wise nonlinearity:

xl+1 = g(Wlxl + bl)

We use a feed-forward, fully-connected NN that operates
on stacked MFCC feature vectors. Most of the time and band-
width is spent multiplying the layers’ weight matrices by their
input vectors. To save bandwidth, the weights can be quan-
tized and multiple frames can be evaluated in parallel, as with
GMMs. We also train sparse matrices and store only the

Figure 2: Bandwidth/accuracy tradeoff for SGMM.

nonzero weights [9]; similar gains could be made with low-rank
approximations [10]. Our model performs a piecewise Cheby-
shev polynomial approximation to the sigmoid function.

NN evaluation requires working memory proportional to
the width of the largest layer. This memory is used most ef-
ficiently if all of the layers, including the output layer, have ap-
proximately the same number of outputs. This is in contrast to
most software implementations where the output layer is large
(2k–16k nodes) relative to the hidden layers (512–2k nodes).

Figure 3 shows results for a variety of NN sizes and spar-
sities. For this task, small NNs perform almost as well as large
NNs. A quantized sparse NN with 512 nodes per layer requires
about 4 MB/s of memory bandwidth to evaluate, with 10% rel-
ative WER degradation compared to the best model tested.

Figure 3: Bandwidth/accuracy tradeoff for NN acoustic model.

2.2. Model comparison and discussion

Figure 4 shows the Pareto optimal subset of results from each
model framework. This allows us to see the tradeoff between
WER and memory bandwidth, assuming that hyperparameters
such as quantizer depth and model dimensions have been opti-
mized. Only the acoustic model’s contribution to bandwidth is
included.

We selected the DNN framework for our implementation
because it offers the best accuracy, even when memory band-
width is strictly limited. We hope that further improvements
developed by the ASR research community can be ported to
hardware with incremental changes in architecture.

1894



Figure 4: Bandwidth/accuracy comparison of AM frameworks.

3. Search
Our recognizers use Kaldi’s HCLG WFST construction. The
search subsystem initializes a set of hypotheses for the HMM’s
hidden state and propagates them forward in time. Our start-
ing point is the architecture presented in [11], which moves hy-
potheses between two “active state lists” in local memory.

The forward pass of Viterbi search is divided into two
phases (based on the input label of WFST arcs): the “non-ε”
phase and the “ε” phase. To avoid recursion in the ε phase,
we preprocess the WFST so that all paths of only ε arcs are by-
passed by a single ε arc having the same total weight [12]. Some
paths may traverse multiple arcs with non-ε output labels, so we
create multi-word output symbols as necessary to bypass these
paths; see Figure 5.

1:ε

ε:ε

2:ε

ε:the ε:design

ε:sum
ε:some

ε:ε

2:ε

ε:ε

ε:sum

ε:sum

ε:(the design)

Figure 5: WFST preprocessing with multi-word output sym-
bols. Left: Adding ε arcs to bypass arbitrary length chains of
only ε arcs [12]. Right: Compound word labels are created for
arcs that bypass multiple non-ε output labels.

The following sections describe our efforts to implement
a WFST search supporting large models on a processor with
limited local memory and off-chip memory bandwidth.

3.1. WFST

Search initialization, forward passes, final weight updates, and
backtraces all require access to a WFST. Arcs expanded in the
forward pass account for significant memory bandwidth (10–
100 MB/s) in a typical decoder. We apply both compression and
caching to reduce WFST memory bandwidth. These work hand
in hand: compression makes the cache look larger, relative to
the information it is storing. Figure 6 shows the cache hit rate
and WFST-related memory bandwidth for decoding a typical
utterance with different beam widths.

Our WFST encoding is based on [7]. It preserves graph
structure but quantizes weights (arc weights and state final

Figure 6: WFST cache performance with varying beam width.

weights) because high accuracy is unnecessary. Each state is
stored as a state header followed by a sequence of arcs. The
data structure is illustrated in Figure 7.

14:3160/0.5

180:1444/1.5

56:0/1.5

80:0/0.5

81:0/0.4

82:0/0.5

1

2

3

4

5

6

States

Final Weight

Arcs

Dest Weight Input Output
LabelState Label

1

4

0

18

2

3

4

1

2

14

180

56

3160

1444

0

1

2

6b 32b 6b 12b 16b

Header

FW SL OL SD LD DS

8b

FW SL OL SD LD DS

0 10 0

0

8

8

1

1 111

Quantizer Index Quantizer Index

4

11

11

3

9
804

4b 6b 4bSelf Loop Weight

6b 12b

Quantizer Index Base Input Label

Figure 7: Example WFST and compressed format.

States are packed byte-aligned so that the byte address of
a state can be used as a unique ID. This compression scheme
results in compression ratios of 0.279–0.366 for the five recog-
nizers we studied, which is similar to gzip (0.308–0.378).

3.2. Beam width control

ASR systems keep runtime in check by using a “beam search”
variant of the Viterbi algorithm, pruning unlikely hypotheses
during each forward pass [13]. The pruning can be relative
(based on likelihood) or absolute (based on a maximum number
of hypotheses). The desired number of hypotheses varies nat-
urally over time; for example, there is a high branching factor
near the beginning of a word. Figure 8 demonstrates this effect
when decoding with relative pruning.

Hardware implementations need a combination of relative
and absolute pruning to operate efficiently with a fixed local
memory. We have a configurable hard limit for the number of
active states; when this limit is reached during search, we re-
duce the beam width and prune the hypotheses in-place. This
introduces search errors: it changes the beam width within a
single frame, and the beam width is reduced in fixed (relatively
large) increments to avoid repeating the process many times.

Performance can be improved over this crude approach by
adding a “soft” cutoff inspired by Kaldi [14]. When the soft cut-
off is exceeded, we preemptively reduce the beam width. This
is done by storing a histogram of relative log-likelihoods, as in
[15], and estimating (via linear interpolation of the cumulative
sum) the beam width needed to hit a target state count. This
is illustrated in Figure 9. We use the histogram to compute a

1895



Figure 8: The changing level of ambiguity in the speech signal
causes search workload to vary over time.

pruning threshold for the next frame, rather than retroactively
pruning the current hypotheses. This feature is only engaged if
the soft cutoff is lower than the hard cutoff.

5 0 5 10 15 20
0

200

400

600

800

1000

1200

1400
Histogram of relative scores

5 0 5 10 15 20
0

2000

4000

6000

8000

10000
Approximate CDF

Required rel. cutoff

Target num. states

Figure 9: CDF-based beam width estimation using a soft cutoff.

The performance impact of these pruning mechanisms is
visible in Figure 10. These results were obtained on the WSJ
dev93 task (configured as in section 2) using a sparse 6-layer
DNN acoustic model with 1024 nodes per hidden layer. Gen-
erally, lowering the cutoffs speeds up decoding at higher beam
widths. Using a soft cutoff at 2k states (compared to the default
of 5k) saves almost as much time as a hard cutoff, but doesn’t
degrade accuracy.

Figure 10: WER (left) and RTF (right) for search using varying
soft and hard cutoffs, compared to Kaldi.

3.3. Word lattice

Viterbi search generates the equivalent of a state lattice, but
the information needed to reconstruct word hypotheses can be
stored in a smaller word lattice. As Figure 11 shows, most of the
arcs in the state lattice have ε output labels. To reduce memory
bandwidth (both reads and writes), we maintain a word lattice

in local memory and save it to the external memory when there
is an overflow. The lattice is pruned after every frame.

t - 1 t t + 1
Frame Frame Frame

10 ms
Typical bandwidth:
5--10 MB/s

honor

on

the

0.1--0.5 s

Typ. bandwidth:
< 1 MB/s

on

honor

the

test

rather
find

specific

specific

cases

see

unique

first

Figure 11: State lattice (left) and word lattice (right) structures.

The WFST state ID is not sufficient to uniquely identify
a word lattice (WL) state because WFST states can be visited
multiple times (for example, when a phrase matching a lan-
guage model N-gram appears twice in an utterance). Loops can
be prevented by using a tuple of (WFST state ID, number of
words) as the WL state ID, but we use (WFST state ID, frame
index) to keep scores consistent for pruning. This is similar to
the word trace mentioned in [16].

The word lattice must be coordinated with the state list. We
opted to store the WL state ID associated with every hypothesis
in the state list. This requires more local memory, but the state
list only includes hypotheses for 2 frames, whereas the word
lattice covers the entire utterance.

Figure 12 shows the effect of the word lattice structure on
external memory writes. Heavy workloads force more frequent
word lattice snapshots, but there is still a 7–8x bandwidth sav-
ings because not all arcs have word labels.

Figure 12: Write bandwidth comparison of state lattice and
word lattice approaches, averaged over a single utterance.

4. Conclusions
This paper has laid the groundwork for memory-efficient ASR
decoders with a bandwidth requirement on the order of 10
MB/s. We will provide more details about our hardware archi-
tecture and implementation in a future publication. Future work
will also consider recent developments such as CTC-trained
LSTM models [17] and split-VQ compression [18].

5. Acknowledgements
This work was funded by Quanta Computer via the Qmulus
Project.

1896



6. References
[1] M. Horowitz, “Computing’s energy problem (and what we can do

about it),” in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2014 IEEE International, Feb 2014, pp. 10–14.

[2] M. Mohri, F. Pereira, and M. Riley, “Speech recognition with
weighted finite-state transducers,” in Springer Handbook on
Speech Processing and Speech Communication, 2008.

[3] T. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
Long Short-Term Memory, fully connected Deep Neural Net-
works,” in Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, April 2015, pp. 4580–
4584.

[4] D. Povey, L. Burget, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal,
O. Glembek, N. Goel, M. Karafiat, A. Rastrow, R. Rose,
P. Schwarz, and S. Thomas, “Subspace Gaussian Mixture Models
for speech recognition,” in Acoustics Speech and Signal Process-
ing (ICASSP), 2010 IEEE International Conference on, March
2010, pp. 4330–4333.

[5] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi Speech
Recognition Toolkit,” in IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding. IEEE Signal Processing
Society, Dec. 2011, iEEE Catalog No.: CFP11SRW-USB.

[6] D. B. Paul and J. M. Baker, “The design for the Wall
Street Journal-based CSR corpus,” in Proceedings of the
workshop on Speech and Natural Language, ser. HLT
’91. Stroudsburg, PA, USA: Association for Computa-
tional Linguistics, 1992, pp. 357–362. [Online]. Available:
http://dx.doi.org/10.3115/1075527.1075614

[7] I. L. Hetherington, “PocketSUMMIT: Small-Footprint Contin-
uous Speech Recognition,” in INTERSPEECH-2007, 2007, pp.
1465–1468.

[8] G. He, T. Sugahara, Y. Miyamoto, T. Fujinaga, H. Noguchi,
S. Izumi, H. Kawaguchi, and M. Yoshimoto, “A 40 nm 144
mW VLSI Processor for Real-Time 60-kWord Continuous Speech
Recognition,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 59, no. 8, pp. 1656–1666, 2012.

[9] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting sparseness in
deep neural networks for large vocabulary speech recognition,” in
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on, March 2012, pp. 4409–4412.

[10] P. Nakkiran, R. Alvarez, R. Prabhavalkar, and C. Parada, “Com-
pressing deep neural networks using a rank-constrained topology,”
in Proceedings of Annual Conference of the International Speech
Communication Association (Interspeech), 2015, pp. 1473–1477.

[11] M. Price, J. Glass, and A. Chandrakasan, “A 6 mW, 5,000-Word
Real-Time Speech Recognizer Using WFST Models,” Solid-State
Circuits, IEEE Journal of, vol. 50, no. 1, pp. 102–112, Jan 2015.

[12] J. Choi, K. You, and W. Sung, “An FPGA implementation of
speech recognition with weighted finite state transducers,” in
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, march 2010, pp. 1602 –1605.

[13] F. Jelinek, Statistical methods for speech recognition. MIT Press,
1997.

[14] D. Povey et al., “Decoders used in the Kaldi toolkit
(Kaldi documentation),” available online: http://kaldi-
asr.org/doc/decoders.html.

[15] V. Steinbiss, B.-H. Tran, and H. Ney, “Improvements in beam
search.” in ICSLP, vol. 94, no. 4, 1994, pp. 2143–2146.

[16] G. Saon, D. Povey, and G. Zweig, “Anatomy of an extremely fast
LVCSR decoder.” in INTERSPEECH, 2005, pp. 549–552.

[17] I. McGraw, R. Prabhavalkar, R. Alvarez, M. G. Arenas, K. Rao,
D. Rybach, O. Alsharif, A. Gruenstein, C. Parada et al., “Person-
alized speech recognition on mobile devices,” in 2016 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 5955–5959.

[18] Y. Wang, J. Li, and Y. Gong, “Small-footprint high-performance
deep neural network-based speech recognition using split-vq,” in
2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2015, pp. 4984–4988.

1897


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by James Glass
	----------

