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Abstract
While DNN-HMM acoustic models have replaced GMM-
HMMs in the standard ASR pipeline due to performance im-
provements, one unrealistic assumption that remains in these
models is the conditional independence assumption of the Hid-
den Markov Model (HMM). In this work, we explore the extent
to which depth of neural networks helps compensate for these
poor conditional independence assumptions. Using a bootstrap
resampling framework that allows us to control the amount of
data dependence in the test set while still using real observa-
tions from the data, we can determine how robust neural net-
works, and particularly deeper models, are to data dependence.
Our conclusions are that if the data were to match the condi-
tional independence assumptions of the HMM, there would be
little benefit from using deeper models. It is only when data be-
come more dependent that depth improves ASR performance.
That performance substantially degrades, however, as the data
becomes more realistic suggests that better temporal modeling
is still needed for ASR.
Index Terms: Deep Learning, Acoustic Modeling, Bootstrap
Resampling, Hidden Markov Models

1. Introduction
Neural Networks are a now-standard part of automatic speech
recognition (ASR) pipelines, as its use in acoustic and language
modeling have significantly improved performance of ASR sys-
tems. In particular, deep network networks (DNNs) are now
ubiquitous in modern acoustic models since work in [1] demon-
strated that replacing the Gaussian Mixture Model (GMM) of a
GMM-Hidden Markov Model (HMM) acoustic model with a
DNN substantially decreased word error rates. Since that time,
more recent work has attempted to replace the HMM with re-
current neural models – such as RNNs and LSTMs [2, 3] – and
some, such as CTC-trained RNNs and attention-based models
[2, 4], obviate the need for a lexicon by training on spelling
directly. While some of these efforts have been successful in
improving the word error rate of state-of-the-art recognition
systems, the relative improvement of replacing HMMs with re-
current models does not match that of swapping GMM-HMMs
with DNN-HMMs.

This paper aims to understand why the DNN of the DNN-
HMM acoustic model improves speech recognition perfor-
mance so dramatically, and to determine what role depth plays.
The purpose is to hopefully learn what types of problems neural
networks solve and what still remain, so that future researchers
can focus on the most pressing issues. This work adds to a
growing body of literature on analyses of DNN-HMM acoustic

models. [5] compared DNNs to GMMs in HMM-based sys-
tems on metrics such as phone error rate, noise robustness, and
speaking rate, and concluded that DNNs are likely better frame
estimators than GMMs. [6] measured the ASR performance
after each step of MFCC processing, and also illustrated how
layers learned auditory filters when given windowed raw time
signals. [7] found that, on a phone recognition task, that hidden
units of deeper layers encoded more specific phonemic infor-
mation, and also removed seemingly uninformative properties
such as gender. For Tandem [8] features, which share proper-
ties of DNNs in hybrid models, [9] showed that deep Tandem
features were more somewhat robust to data dependence com-
pared to MFCC features on metrics of phone and word error
rates.

In this work, we make what seems at first glance to be a
rather curious hypothesis: that neural networks, and particu-
larly deep networks, help compensate for poor conditional in-
dependence assumptions in HMM-based acoustic models. Put
another way, if our data were to match our assumptions of the
statistical model, there would be little to be gained from using
a deep neural network – and possibly one with many more pa-
rameters – instead of a shallower one, or even a Gaussian Mix-
ture Model. It is only when data violate modeling assumptions
of the HMM that deep neural networks exhibit better perfor-
mance. This suggests that even beyond better frame accuracy,
neural networks are able to compensate for poor conditional in-
dependence assumptions of Hidden Markov Models.

To test this hypothesis, we generate synthetic data that
matches the conditional independence assumptions of the
HMM, and slowly break those assumptions to determine how
performance degrades as the data become more “realistic”. The
tool we use is the bootstrap of Bradley Efron ([10, 11]), first
applied to ASR by [12]. A description of the method is outlined
in the next section.

2. Synthetic Data Generation
2.1. Mathematical Setup

While implicitly researchers assume that the DNN-HMM is a
single statistical model, in this work, we alternatively view the
model as an HMM with log-linear observations. Input fea-
tures to this model are last hidden layers of feedforward neural
networks. The features themselves discriminatively trained on
triphone state targets, and the log-linear observation model is
specified as:

P (Ot = h|st) ∝ exp(Wh+ b)
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where h is the last hidden layer, and W and b are parameters
of the model. W and b are never estimated explicitly; instead,
up to a scaling constant, one can calculate P (Ot = h|st) from
the output of logistic regression layer of the neural network –
which specifies the model for P (st|Ot = h) – and the prior
probability of states P (st) – estimated from state alignments
on training data – by applying Bayes’ rule.

Ideally, with these acoustic and language models P (O|S)
and P (W ), respectively, we hope to have created a model
Pmodel(O,W ) = P (O|S)P (W ) that well represents the
stochastic process of speech, specified by probability distribu-
tion Ptrue(O,W ). Naturally, we would like to check to what
extent Pmodel(O,W ) ≈ Ptrue(O,W ), since, if the distribu-
tions are close, taking the Bayes decision at test time would
theoretically achieve the (nearly) optimal word error rate. 1 As
we only have samples of Ptrue(O,W ) and not direct access to
this distribution, however, we cannot check out model directly.

Instead, we attempt to understand to what extent
Pmodel(O,W ) ≈ Ptrue(O,W ) by creating synthetic data
with distribution Psyn(O,W ) and calculating error metrics. If
model assumptions are satisfied by the synthetic data, and the
model is indeed close to true distribution, then:

EPsyn(O,W )[L(W, Ŵ )] = EPtrue(O,W )[L(W, Ŵ )]

where Ŵ is hypothesized word sequence decoded using
Pmodel(O,W ). We estimate this risk by calculating error on
a test set. Mathematically, we make the approximation:

EPtrue(O,W )[L(W, Ŵ )] ≈ 1

N

∑
O

L(W, Ŵ )

and

EPsyn(O,W )[L(W, Ŵ )] ≈ 1

N

∑
Osyn

L(W, Ŵ )

where Osyn are features generated from the synthetic test data.
Of course, the converse is not true (i.e., equivalent risks do not
imply that the probability model is correct), but highlighting
the data/model mismatch will provide some intuition as to how
our model is a poor representation of the underlying stochastic
process of speech.

2.2. Bootstrap

Our goals for creating synthetic data are to control the inde-
pendence assumptions of the simulated data while leaving other
properties unchanged from the original data. Desiderata include
using real acoustic observations, and a mechanism by which we
can match, and then slowly break, the conditional independence
assumptions of the HMM. We generate simulated data of the
form:

Psyn(O,S) = Psyn(S)

N∏
i=1

Psyn(Oi|Si)

where S ∼ Psyn(S) is the triphone state sequence and Oi ∼
Psyn(Oi|Si) the observation given a particular state Si. We use
the test set alignment for the state sequence S (which can be
considered a draw from the true distribution of state alignments
Ptrue(S)), and bootstrap resampling to generate draws from
Psyn(Oi|Si). Figure 1 illustrates an example of this process:

1Calculating posterior expected loss may be unnecessary in most
cases: if the posterior probability P (W |O) > 0.5, [13] showed that a
MAP decision is equivalent to the Bayes decision rule.

using the alignment of an utterance from a simulation set to
determine the underlying state sequence, features correspond-
ing to particular phones from the utterance are binned. After
phones from all utterances in the simulation set are binned, for
each test utterance, the original features for a particular phone
are discarded and a new one is drawn with replacement from the
bins. Once observations for all phones are replaced, the result-
ing features, in this example, are conditionally independent at
the phone level. This general form, however, also allows us to
create data that match conditional independence assumptions of
the model if we draw every frame from state bins. In this work,
we generate synthetic data for frame, state, and phone2 levels,
and create 5 copies to estimate the standard error across sets.
Unlike previous work [12, 14, 9], we do not sample at the word
level, as a non-negligible percentage of words in the simulation
set have few examples (in this dataset 8.5% and 13.2% of words
are singletons or have fewer than 5 instances, respectively), and
resampling from such a distribution does not give a reasonable
estimate of the underlying probability distribution of the word,
should it exist.

One final question is what data we should use for the simu-
lation set. The two choices generally available are one disjoint
from the training and test sets, and the other is the test set. Using
the disjoint set allows us to draw from a much bigger dataset,
but generally the speakers from this pool are different from the
original test set, and thus makes the relative degradation from
sampled to original data seem higher than in general.3 Instead,
we opt to sample from the test set, which allows for more direct
comparisons between simulated and real data.

3. Experimental Setup
3.1. Data

For this experiment, we use the Switchboard 1 Release 2 corpus
(LDC97S62) for training. This conversational speech recog-
nition corpus comprises 300 hours of data over 542 speakers,
301 of whom are male. The test set for this experiment is the
Switchboard portion of Hub5 ’00 (LDC2002S09). The lexicon
consists of 30K words, and the Kneser-Ney smoothed trigram
language model (LM) used in this study is trained on the 3M
words in 300-hour set, and contains 272K and 455K trigrams
and bigrams, respectively.

3.2. Model

The recognizer for this experiment is Kaldi [16], and the setup
roughly follows the s5b example (outlined in [17]). The base-
line GMM-HMM system uses roughly 9,000 triphone states and
200K Gaussians, trained with maximum likelihood criterion.
The features used are MFCCs with 7 frames of context, mean-
normalized per speaker, projected down to 40 dimensions using
linear discriminant analysis, with semi-tied covariance [18], and
speaker-adaptively trained using a single feature-space maxi-
mum likelihood linear regression (FMLLR) per speaker. This
feature is denoted as SAT.

The neural networks are trained with the these SAT fea-
tures, with 11 frames of context, and are mean and variance
normalized. The neural network features used in this work vary

2In Kaldi, each “phone” corresponds to pdf triple, to account for
triphone context.

3As done in this work, one can partially control for speaker effects
by using speaker-adapted features, but in preliminary work on the ICSI
Meeting Corpus [15], we found higher relative degradation when using
a disjoint independent set.
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Figure 1: Illustration of Bootstrap Resampling at the Phone Level. Inside the dashed boxes are alignments for the simulation and test
sets. The urns in the middle pane correspond to the bins into which acoustic observations of particular phones are accumulated from
the simulation set. Then, a synthetic test utterance is created by drawing, with replacement, observations from the bins.

from 0 to 6 hidden layers (where 0 is simply logistic regres-
sion), and two types of architectures are tested: one where the
size of each hidden layer, and one where the number of param-
eters, is held constant. For the first type of architecture, each
hidden layer is of size 2,048, while for the second the number
of parameters are constrained to be roughly 36M, with the hid-
den layer size equal for each layer. The number of parameters
in the latter experiment were chosen from the best-performing
neural network in the equal hidden layer size experiment. Ta-
ble 1 shows the architecture used for the neural networks in the
equal parameter experiment. These so-called “derived features”
are denoted as NN-xHL in this and subsequent tables, where x
is the number of hidden layers (HL), while the “-EP” designa-
tion refers to “equal parameter.”

The neural networks are pertained using Restricted Boltz-
mann Machines (RBMs) [19] from initial weights drawn from
a Gaussian distribution of mean 0 and standard deviation 0.01.
The first Gaussian-Bernoulli layer is trained with learning rate
0.01 for 1 epoch, and following Bernoulli-Bernoulli layers are
trained for 1 epoch with learning rate 0.04. The neural networks
are then discriminatively trained using the cross-entropy train-
ing criterion, using alignments generated from the GMM-HMM
system as labels. The networks are optimized with stochastic
gradient descent, with 90% of the data used for training and re-
maining for cross-validation. The minibatch size is 256, and the
learning rate schedule is initialized to 0.008, and halves when
the cross-validation frame accuracy does not improve by at least
0.5%. Training terminates when the cross-validation accuracy
fails to improve by more than 0.1%. Neural network trainings
finished after 12-17 epochs.

4. Results
4.1. Equal Hidden Layer Size

Table 2 shows the results for various features as data becomes
dependent (when read from left to right), where the neural net-

# hid units/layer # parameters
NN-1HL-EP 3850 36.3M
NN-2HL-EP 2920 36.1M
NN-3HL-EP 2500 36.1M
NN-4HL-EP 2250 36.4M
NN-5HL-EP 2048 36.1M

Table 1: The size of hidden layers and number of parameters
for each feature type in equal parameter experiment (denoted
(EP).

Feature frame state phone original
GMM 2.7 (.05) 9.1 (.12) 15.7 (.08) 21.8
NN-0HL 3.7 (.05) 13.0 (.17) 21.9 (.16) 31.6
NN-1HL 2.6 (0.0) 7.8 (.13) 12.9 (.15) 18.7
NN-2HL 2.5 (.05) 7.2 (.11) 11.8 (.18) 16.4
NN-3HL 2.5 (.04) 7.1 (.10) 11.4 (.17) 15.7
NN-4HL 2.5 (.04) 7.0 (.10) 11.2 (.19) 15.2
NN-5HL 2.5 (0.0) 7.0 (.11) 11.2 (.23) 15.0
NN-6HL 2.5 (0.0) 7.1 (.15) 11.2 (.16) 15.1

Table 2: Word Error Rate of various neural network features
with equal-sized hidden layers for different types of resampled
data, averaged across 5 runs. Numbers in parentheses indicate
the standard error. GMM refers to Gaussian Mixture Model
classifier, NN neural network, and HL hidden layer. Unless
noted as GMM, the observation model is the log-linear model.
Note that NN-0HL are simply SAT features. Data matches the
conditional independence assumptions of the HMM model at
the frame level, and becomes increasingly more dependent at
the state level, phone level, and original data.

work features have equal-sized hidden layers. Somewhat sur-
prisingly, if the conditional independence assumptions of the
Hidden Markov Model are matched, as they are for frame-level
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resampled data, there is only a marginal improvement from re-
placing the SAT features and GMM classifier with neural net-
work features and log-linear classifier. The results for SAT fea-
tures using only a log-linear model – denoted NN-0HL – are un-
competitive, likely because it is a poorer frame classifier: frame
accuracy on the test set was 31%, compared to 43-48% for other
neural network features.4 Moreover, using more than one hid-
den layer yielded at best modest – 4% relative – reduction in
word error rate, and increasing the number of hidden layers to
more than 2 does not improve performance. As data become
more dependent, however, the improvement from using neural
networks and deeper networks becomes more pronounced. At
the state level, neural network features achieve better word er-
ror rates than standard speaker-adaptive features, and unlike for
the frame-level resampled data, increasing depth beyond 1 hid-
den layer does improve results more substantially. In this case,
using neural networks with more than 2 hidden layers yields
only marginal improvements, and in fact is within the standard
error of the best-performing feature. For phone-level resam-
pled data, again increasing depth by a hidden layer improves
word error rate results, while again word error rates for the neu-
ral network feature with 3 hidden layers are within a standard
deviation away from the best-performing feature. Finally, for
the original data, using 4 hidden layers yields an improvement,
and using more provides little benefit (though one can improve
results slightly with a 5-hidden-layer network). The general
trend is that the “optimal” depth is deeper for more realistic
data, which suggests that deeper models are more robust to vi-
olated conditional independence assumptions in the data. That
said, the six- to seven-fold increase in word error rate suggests
that hybrid models, even with deep neural networks, suffer from
data/model mismatch.

4.2. Equal Number Neural Network Parameters

Table 3 shows the results for different neural network features
if the number of parameters of the neural networks are equal.
Compared to results in the previous section, the word error rates
of the shallower networks decreases, such as for features with 1
hidden layer, or is roughly equivalent, for those with 3 hidden
layers. The better performance of shallower networks for this
experiment are not sufficient, however, to achieve the same per-
formance as the deeper networks.5 As a result, the overall mes-
sage stays the same: if the data were to match the conditional in-
dependence assumptions of the HMM model, then there is little
gain from using neural networks features compared to standard
ones with a GMM classifier. As the data becomes more depen-
dent, not only do neural network features improve performance
compared to a GMM system, using deeper neural networks ac-
tually make the model more robust to data dependence.

5. Conclusion
In this work, we studied to what extent neural networks in
DNN-HMM hybrid systems, and particularly depth of those
networks, compensated for incorrect assumptions in the HMM

4While this explains results for synthetic data resampled at the frame
level, an additional source of degradation is the violation of conditional
independence assumptions. 10 of 11 frames of features are identical for
consecutive frames.

5Although one could use a teacher-student framework such as [20]
to possibly achieve performance equivalent to deeper networks. This
model first trains a deep neural network, and then trains a shallow net-
work to learn pre-softmax outputs of the deeper network. This approach
was not studied in this work.

Feature frame state phone original
GMM* 2.7 (.05) 9.1 (.12) 15.7 (.08) 21.8
NN-0HL-EP* 3.7 (.05) 13.0 (.17) 21.9 (.16) 31.6
NN-1HL-EP 2.6 (.05) 7.6 (.13) 12.5 (.17) 18.0
NN-2HL-EP 2.5 (.05) 7.2 (.10) 11.7 (.16) 16.3
NN-3HL-EP 2.5 (0.0) 7.1 (.10) 11.4 (.18) 15.7
NN-4HL-EP 2.5 (0.0) 7.0 (.11) 11.3 (.14) 15.2
NN-5HL-EP 2.5 (0.0) 7.0 (.11) 11.2 (.23) 15.0

Table 3: Word Error Rate of various neural network features
with equal number of parameters for different types of resam-
pled data, averaged across 5 runs. Numbers in parentheses in-
dicate the standard error. GMM refers to Gaussian Mixture
Model classifier, NN neural network, and HL hidden layer. Un-
less noted as GMM, the observation model is the log-linear
model. Note that NN-0HL are simply SAT features. The aster-
isks designate systems that do not use the same number of pa-
rameters. Unless noted as GMM, the observation model is the
log-linear model. Note that NN-0HL are simply SAT features.
Data matches the conditional independence assumptions of the
HMM model at the frame level, and becomes increasingly more
dependent at the state level, phone level, and original data.

model. In viewing the hybrid system as a log-linear-HMM sys-
tem with features from the last hidden layer of a trained DNN,
we showed that neural networks indeed compensated for poor
conditional independence assumptions in the HMM. If our data
were to match our assumptions, there would be little benefit of
using a neural network, much less a deep one. As the data be-
came more dependent, however, the deeper networks were more
robust to data/model mismatch than shallower ones or GMMs.

Despite these improvements, however, the six- to seven-
fold increase in word error rate from synthetic to real data
strongly suggests that our temporal modeling is still poor. One
way to decrease this gap is to use sequence-discriminative
training criteria such a (boosted) maximum mutual informa-
tion [21, 22], minimum phone error [23], state-level minimum
Bayes risk [24, 25], or large-margin methods [26]. These cri-
teria, however, tend to ameliorate, rather than fix, unrealistic
modeling assumptions. Newer acoustic models, such as simple
recurrent neural networks and long short-term memory (LSTM)
networks, have shown some promise, though the improvement
relative to hybrid systems is quite less than that for replacing
the GMM with the DNN. Why this occurs is an interesting
and open problem, and one for which this current approach
is ill-suited. Perhaps hypothesizing a more realistic generative
model of speech, creating data based on that generative model,
and comparing performance of better synthetic and real data for
these newer acoustic models can shed some light on what prob-
lems remain in the system.

6. Reproducible Research
In an effort to make this research reproducible, the
setup for these experiments will be made available at
http://www.github.com/sumanvravuri.
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