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Abstract
Recently neural network acoustic models trained with Connec-
tionist Temporal Classification (CTC) were proposed as an al-
ternative approach to conventional cross-entropy trained neu-
ral network acoustic models which output frame-level decisions
every 10ms [1]. As opposed to conventional models, CTC
learns an alignment jointly with the acoustic model, and out-
puts a blank symbol in addition to the regular acoustic state
units. This allows the CTC model to run with a lower frame
rate, outputting decisions every 30ms rather than 10ms as in
conventional models, thus improving overall system speed. In
this work, we explore how conventional models behave with
lower frame rates. On a large vocabulary Voice Search task,
we will show that with conventional models, we can slow the
frame rate to 40ms while improving WER by 3% relative over
a CTC-based model.
Index Terms: speech recognition, recurrent neural networks,
connectionist temporal classification.

1. Introduction
Conventional hybrid neural network acoustic models output
frame-level predictions for each content-dependent (CD)-state
acoustic unit at every frame (i.e., 10ms) [2]. These CD-states
are used as emission probabilities of a Hidden Markov Model
(HMM). While the first generation of hybrid systems used Deep
Neural Networks (DNNs) [3], more recently recurrent architec-
tures, including Long Short Term Memory (LSTM) recurrent
neural networks [4] and Convolutional Long Short Term Mem-
ory Deep Neural Networks (CLDNNs) [5] have shown addi-
tional improvements in hybrid systems. These models are typ-
ically trained using a frame-level cross-entropy criterion, fol-
lowed by a sequence discriminative criterion [6]. One of the
drawbacks of conventional models is that they require a frame-
level alignment for cross-entropy training.

To address the frame labeling issue, RNN-type architec-
tures trained with a connectionist temporal classification (CTC)
criterion were proposed [7]. CTC provides a mechanism to
learn an acoustic model while mapping a sequence of input
frames to a sequence of output labels. To allow for output se-
quences that are shorter than the input sequences, a blank output
symbol is used in addition to the regular acoustic units in con-
ventional models.

In [1] it was shown that CTC-LSTM acoustic models out-
perform conventional LSTM models. To facilitate CTC train-
ing these CTC-LSTM models used one-state, context depen-
dent phones (CD-Phones) [8]. One of the benefits of CTC with
CD-Phones is that it allowed the model to output a symbol ev-
ery 30ms, rather than the conventional 10ms. This lower frame
rate reduced the length of both the input and output sequences,
which reduces the computational cost during decoding and pro-
vided improvements in latency. In addition, at training time,

this setup reduces the number of possible different alignments
of each output sequence which in turn reduces the difficulty of
the task, yielding efficient training.

While CTC does not require a pre-existing alignment, it
also has a few drawbacks as well. First, [9] demonstrated that
CTC models severly overfit to the training data, and could only
match the performance of conventional models when trained
with over 40,000 hours of data. Second, a consequence of us-
ing the CTC objective is that the time at which an output tar-
get is detected can be arbitrarily delayed after its correspond-
ing input event. This means that a CTC-trained model is un-
able to produce accurate alignment of the input and output se-
quences. Therefore, additional latency might be introduced due
to the delayed output. To overcome the latency problem, in [1]
only alignments that do not deviate more than a 100ms from
a given forced-alignment were used. This constraint was re-
moved from the subsequent sequence training stage and the re-
sulting models performed as well as unconstrained models, but
resulted in a system with about 150ms of latency, compared to
the conventional models which had only 50ms of latency. Third,
while adding convolutional layers to the LSTM architecture was
shown to help in [5] for conventional models, [1] did not find
the additional layers to be helpful when trained with the CTC
objective.

The purpose of this paper is to explore how conventional
LSTM-type models behave when trained with lower frame rates
and CD phones. We will refer to this model as a lower frame
rate (LFR) model. These models are trained using the standard
cross-entropy and sequence training criteria. We note that al-
though CTC models can be trained with lower frame rates as
well, we use the term LFR to refer to conventional models, as
these are the focus of investigation in this paper. On a large
vocabulary Voice Search task, we will show that LSTM LFR
models can match the performance of CTC models, both trained
with 30ms frame rates. In addition, we address many of the con-
cerns with CTC models addressed above. First, we will show
that we can obtain an additional 3% relative improvement using
a CLDNN with LFR compared to CTC. Second, with the LFR
model we can increase the frame advance to 40ms with only
an 80ms output delay, compared to the 30ms frame rate 150ms
output delay with CTC. Finally, the LFR model is much more
robust to smaller dataset sizes compared to CTC.

The rest of the paper is organized as follows. In Section 2
we describe conventional and CTC training, as well as the LFR
models explored in this work. In Sections 3 and 4 we discuss
experiments and results, and finally conclude in Section 5.

2. Acoustic Modeling with LSTM RNNs
In this section, we describe various approaches for acoustic
modeling with neural networks. Once the acoustic unit is cho-
sen (i.e., CD-states, CD-phones), training can use either hard
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(Viterbi) or soft (Baum-welch) alignments. In addition, various
objective functions can be used to train these models, including
cross-entropy (CE), CTC and sequence training (ST). We will
describe these different factors in the following section, includ-
ing our proposed LFR model. For a more detailed summary of
these different factors, we refer the reader to [9].

2.1. Conventional Models Trained with Cross-Entropy

Denote the input sequence for an utterance of length T as x =
x1, . . . , xT , where xt ∈ RN is a frame-level feature vector (i.e.,
log-mel feature), and w the output word word sequence. The
acoustic likelihood can be written as follows, using the Viterbi
approximation:

p(x|w) =

T∏
t=1

p(xt|lt)p(lt|lt−1),

Here l1, . . . , lT is the label sequence computed by forced
alignment of the utterance with the word sequence w, and is
typically performed by a pre-existing model such as a GMM or
neural network 1. In hybrid decoding, the emission probabilty
of the HMM is given as p(xt|lt) = p(lt|xt)p(xt)/p(lt), Here
the label posterior is given by the output of a neural network
acoustic model, and can be computed using using a context of
L frames to the left and R frames to the right of the current
frame, denoted as p(lt|xt) ≈ p(lt|xt−L : xt+R). This allows
the neural network to incorporate acoustic context when making
frame-level predictions for lt. The label prior p(lt) is obtained
by counting the label frequency produced from the forced align-
ment. The data likelihood p(xt) does not depend on labels and
thus can be ignored for training and decoding purposes [2].

Given input sequence x and corresponding frame level
alignment l of equal size, the neural network acoustic model
is first trained to maximize the CE loss on all acoustic frames,
as follows

LCE = −
∑
(x,l)

|x|∑
t=1

log p(lt|xt). (1)

Here p(l|x) is the label posterior after the softmax output layer
of the neural network. A weakness of this criterion is time-
independent treatment of each label. This can be fixed with
additional training using a seqeunce discriminative criterion, as
discussed below.

2.1.1. Conventional modeling

Most ASR systems make the assumption that on a 10ms time
scale the speech signal can be approximated as a piecewise-
stationary process, giving rise to locally shift invariant repre-
sentations produced by a frontend every 10ms (e.g. xt are log-
mel filterbanks). As phones emerge on longer time scales, each
phone is typically broken into 3 piecewise-stationary models,
where the corresponding HMM topology is a 3-state, left-to-
right model, with self loops. Stateless acoustic models (e.g.
GMM, DNN) are trained to provide a distribution p(xt|st) over
the HMM states every 10ms thus matching the frontend frame
rate. CE training is then carried out as described above with
fixed alignments provided by a trained 10ms model.

1It should be noted that while most conventional models do require
a fixed alignment, there has been work with conventional models where
the alignment is learned online [10]

2.1.2. LFR models

Stateful, recurrent acoustic models are capable of processing
more input before emitting a prediction, thus there is no need
to assume signal stationarity. It follows that there is no need
to break a phone into sub-units, and instead the HMM can use
phones directly (e.g. CD-Phones [8]). These modifications al-
low us to remove the 10ms restriction, and in LFR modeling,
we compute the output label lt at a lower frame rate, or equiv-
alently, higher frame advance (i.e., 20ms, 30ms, etc.). While
alternative front-ends are conceivable, in this work we use a
typical 10ms log-mel frontend, but stack consecutive frames to-
gether to make up for the lower rate, and then subsample the
frames to the desired frame rate, as in [4]. Soft-target label class
posteriors are created by averaging across the 10ms posteriors
in the desired frame rate window.

2.2. Acoustic Models trained with CTC

The connectionist temporal classification (CTC) [7] approach is
a training criterion for sequential models such as RNNs, where
the acoustic model is learned jointly with the label sequence.
CTC models differ from conventional framewise models in two
ways. First, CTC models introduce an additional blank label to
relieve the network from making label predictions at a frame
when it is uncertain. Second, the training criterion operates
at a sequence level, and optimizes the log probability of state
sequences, rather than the log likelihood of independent input
frames as in Equation 1.

The CTC loss function is defined as the sum of negative log
probability of correct labelings for each training example:

LCTC = −
∑
(x,l)

lnp(zl|x) (2)

where x is the input sequence of acoustic frames, l is the target
label sequence (e.g. phonetic transcription for the utterance), zl

is the lattice encoding all possible alignments of x with l which
allows label repetitions possibly interleaved with blank labels.

The probability for correct labelings p(zl|x) can be esti-
mated using the following equation:

p(zl|x) =
∑
π∈zl

ytπt
(3)

Where yts is the softmax output at time t for symbol s, and π
enumerates over all paths in zl. The tractable forward-backward
algorithm is used to compute the summation (See [7] for more
details). As seen in equation 3, the output labels are consid-
ered independent given the internal state of the network, which
hinders the incorporation of language model information. This
weakness can be alleviated with additional training using a se-
qeunce discriminative criterion.

In this work, the label sequence we explore for CTC is the
same one used for the conventional models, namly CD-phones.

2.3. Sequence Discriminative Training

After CTC or CE training is done, typically the model is re-
trained using a sequence-level discriminative training criterion,
which is more closely matched in objective function to the ASR
WER objective [11]. In practice, ST has been shown to im-
prove neural network models trained with either cross-entropy
or CTC training [12, 13, 9]. In this paper, we explore training all
of our models with the state-level minimum Bayes risk (sMBR)
criterion [12].
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3. Experimental setup
3.1. Neural Network Architecture

The acoustic features used for all experiments are 80-
dimensional log-mel filterbank energies computed on 25ms
window every 10 ms. At the current frame t, these features
are stacked with l = 7 frames to the left and downsampled to
the desired frame rate, to produce a 640-dimensional feature
xt−l : xt. This is the same feature used for all NN experiments
in this paper, and is similar to the features used in [4]

Similar to [4], the LSTM models used in this work for
CTC training consist of 5 LSTM layers, with 640 hidden units
per layer and no projection layer. This amounts to ∼20M pa-
rameters. The CLDNN [5] models used for LFR-modeling
have convolutional, LSTM and DNN layers. First, the 8 × 80
time×frequency log-mel feature is fed into a single convo-
lutional layer with a filter size of 8× 15 and 256 feature maps.
After convolution, we use non-overlapping max pooling in fre-
quency only with a window size of 6. The output of the con-
volution layer is passed to a linear bottleneck layer with 256
outputs, followed by 3 LSTM layers with 832 cells and a 512
unit projection layer. Finally, we pass the output of the LSTM to
a fully connected ReLU layer with 1,024 hidden units. Again,
to reduce the number of parameters, the softmax layer is fac-
tored into two with an intermediate 512-node linear low-rank
layer [14]. The CLDNN model also has ∼20M parameters. All
acoustic models have 9,287 CD-phone output targets [8].

3.2. Training procedure

The LFR models are initially trained with CE using asyn-
chronous stochastic gradient descent (ASGD) optimization
[15]. The models use an existing forced-alignment generated
by an existing 10ms CD-state model. Features are extracted
and stacked, and we keep every n-th feature-frame (e.g. n=3
for 30ms) and drop the rest. CTC models were trained us-
ing the same frontend configuration producing frames every
30ms. (see [1] for more details). For LFR models we map
the CD-states to CD-Phones and subsample by averaging n 1-
hot target labels, producing soft targets. All LFR models are
trained with a 1-state HMM. Models are then further trained
sequence-discriminatively using sMBR with a setup similar to
[6]. During training, recurrent networks are unrolled for 20 time
steps for training with truncated back-propagation through time
(BPTT) [16]. All results are reported after ST. In addition, the
output state label is delayed by k frames, where k is chosen
experimentally to strike a good tradeoff between accuracy and
latency, as will be shown in the results.

3.3. Decoding procedure

All acoustic models are decoded with a single pass WFST-based
decoder which uses a 100-million n-gram language model and
a vocabulary larger than 5 million words. The decoder perform-
ings beam search and only keeps 7,000 active arcs at any point
in time.

3.4. Data Sets

For our experiments we use a mutli-style training procedure
[17], where we first start with clean 3m utterances (about 2,000
hrs) which are anonymized and hand-transcribed voice search
queries, and are representative of Google’s voice search traf-
fic. Next, we create a noisier version by adding varying de-
grees of noise and reverberation at the utterance level, such that

overall SNR is between 5dB and 30dB. Samples of noise were
taken from YouTube and daily life noisy environmental record-
ings. We use 20 different noise and reverberation conditions for
each utterance. The full dataset consists of roughly 40,000 hrs,
though only 2,000 unique label-alignments. Our evaluation set
consists of a separate set of about 30,000 utterances (over 20
hours) with similar noise conditions to the training set.

4. Results
4.1. Factors in LFR Models

First, we sweep different parameters in the CLDNN LFR mod-
els to understand their behavior.

4.1.1. Language Model Weight

Whenever a new acoustic model is explored, language model
weights are typically readjusted [4]. Typical viterbi decoders
attempt to maximize the probability of emitting word sequence,
w, given a sequence of acoustic observations, x:

p(w|x) ∝ p(x|w)p(w)α (4)

In this equation, α, the Language Model Weight (LMW),
is a scaling factor which is introduced to compensate for the
fact that acoustic scores are computed every frame while LM
scores are applied every word. The LMW is important during
decoding and for ST lattice generation. Since the number of
frames per word increases with the frame rate, we expect that
lower frame rates will require lower LMW. For each CE trained
model, the LM weight which produces the lowest WER was
determined by sweeping a range of possible values, as shown
in Figure 1. As expected the optimal LMW was found nearly
linearly proportional to the frame rate.

Figure 1: Word Error Rate (%) versus Language Model Weight
for various frame durations.

4.1.2. Delayed Output

The CTC models trained in [1] produce about 150ms of la-
tency between input events and output symbol emission. For
fair comparison, we trained LFR models with outputs delayed
for a few frames to roughly match 150ms. As can be seen in
table 1 WER decreases with lower frame rates up to 40ms, and
then starts to increase. We will provide some intuition for this
behavior in the next section.
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Table 1: Word Error Rates (%) and Output Delays
Model Output Delay WER (%)
CTC-30ms 150ms 12.3
LFR-10ms 150ms 13.0
LFR-20ms 140ms 12.1
LFR-30ms 150ms 11.9
LFR-40ms 160ms 11.8
LFR-50ms 150ms 12.0
LFR-60ms 120ms 12.5
LFR-70ms 140ms 13.9

4.1.3. WER Analysis

In order to gain some insight into the effect of lower frame
rate, Figure 2 compares the insertions, deletions and substitu-
tion rate of the different LFR models. We first observe that the
10ms model suffer from high degree of insertions. This can be
attributed to the 1-state HMM topology which forces minimal
duration of 10ms per phone as opposed to the 30ms that is typi-
cally used with a 3-state HMM. On the other hand, the number
of deletions increases as the frame rates increases above 40ms.
To understand this phenomena better, we examined the distribu-
tion of phone duration, according to forced alignment and found
that 10% of the phones have duration of 40ms or less. This
means that for lower frame rates the more phones are likely to
occupy the same frame. Since the decoder has to choose one
of them, some deletions are expected. Another hypotheses we
have for the degradation in WER when the frame rates are too
long is that the 30ms model, for example, is trained on twice
the number of frames as the 60ms model. Smaller amounts of
training data can also lead to degradations in WER.

Figure 2: Word Error Rate (%) versus frame durations.

4.2. Comparison of LFR vs. CTC Models

In this section, we compare LFR to CTC models.

4.2.1. Convolution

Previous LSTM-CTC models did not show gains when com-
bined with convolution. In this work we compared a conven-
tional LSTM with a conventional CLDNN at lower frame rates.
To match the number of parameters we added another LSTM
layer to the non-convolutional model (totaling 4 layers), so both
models have ∼20M parameters. As shown in Table 2, convolu-
tion gives about 0.5% improvement for the LFR model, while
the CTC model seems to degrade with it. One hypothesis we
have is that CTC models are difficult to train, as they must learn

the alignment jointly with the labeling. Perhaps including a con-
volutional layer, which makes the CTC network have 6 layers,
makes the optimization more difficult.

Table 2: Models with and without convolution
Model No Convolution With Convolution
CTC 30ms 12.6 12.9
LFR 30ms 12.3 11.9

4.3. Shorter output delay

So far we have shown that LFR models can reduce the frame
rate below 30ms with improved WER, and the same 150ms out-
put label delay that CTC introduces (Table 1). In [1] it was
found that below 150ms output label delay CTC model prefor-
mance degrades. We were curious to see if the same is true
for CLDNN-LFR models. Table 3 shows that for conventional
models we can reduce the output delay to 80ms, about half that
in CTC, and still maintain roughly a 3% relative improvement
over the CTC model. To summarize, we have found that the
CLDNN LFR model offers an improvement in both accuracy
and latency with respect to the LSTM CTC model.

Table 3: Word Error Rates (%) and Output Delays
Model Frame Duration Output Delay WER
CD-Phone CTC 30ms 150ms 12.3
CD-Phone CLDNN 40ms 0ms 13.9
CD-Phone CLDNN 40ms 80ms 11.9
CD-Phone CLDNN 40ms 160ms 11.8

4.3.1. Training Data

Finally, as noted in [4], CTC is very sensitive to the amount
of training data used, since it must learn alignments. Therefore,
we compared CTC vs. LFR performance as we vary the amount
of training data. Table 4 shows how the conventional model
degrades more gracefully than CTC, requiring about fourth of
the data to reach the same performance.

Table 4: Training with smaller amounts of data
Training hrs CTC LFR 30ms
500 22.8 17.8
1000 20.4 16.1
2000 17.7 15.7

5. Conclusions
In this paper, we presented a CLDNN LFR model. We have
shown that these models can achieve a 3% relative improve-
ment over the CTC model with reduced latency and graceful
degradation on smaller datasets.
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