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Abstract
Ratings from multiple human annotators are often pooled in ap-
plications where the ground truth is hidden. Examples include
annotating perceived emotions and assessing quality metrics for
speech and image. These ratings are not restricted to a single
dimension and can be multidimensional. In this paper, we pro-
pose an Expectation-Maximization based algorithm to model
such ratings. Our model assumes that there exists a latent mul-
tidimensional ground truth that can be determined from the ob-
servation features and that the ratings provided by the annota-
tors are noisy versions of the ground truth. We test our model
on a study conducted on children with autism to predict a four
dimensional rating of expressivity, naturalness, pronunciation
goodness and engagement. Our goal in this application is to re-
liably predict the individual annotator ratings which can be used
to address issues of cognitive load on the annotators as well as
the rating cost. We initially train a baseline directly predict-
ing annotator ratings from the features and compare it to our
model under three different settings assuming: (i) each entry in
the multidimensional rating is independent of others, (ii) a joint
distribution among rating dimensions exists, (iii) a partial set of
ratings to predict the remaining entries is available.
Index Terms: Multiple Annotator Modeling, Expectation Max-
imization algorithm.

1. Introduction
In several machine learning domains including speech and spo-
ken language based applications, obtaining labeled data attributes
can be very expensive and/or cumbersome while unlabeled data
points are usually available in abundance. This constrains the
direct application of several traditional supervised learning tech-
niques and calls for specialized methods. A few popular tech-
niques that address this problem include active learning [1], do-
main adaptation [2] and crowd sourcing [3]. In particular, crowd
sourcing focuses on pooling ratings from naive annotators and
combining them to estimate the unknown ratings. However, the
combination is often ad-hoc (eg.: use of majority voting, mean
of annotator ratings) and ignores valuable annotator specific in-
formation. Previous works have addressed this issue and pre-
sented frameworks for modeling the annotators’ behavior. In
particular, Dawid [4] proposed a model assuming the ground
truth to be a latent variable and the annotator judgments to be
noisy functions of the latent ground truth. Raykar et al. [3]
extended this model to a discriminative case incorporating de-
pendency of the ground truth of an instance to a set of features
corresponding to that instance and several works [5, 6] have
made further additions to this model. However, explorations
to the case when annotators provide a multidimensional rating
have not been made. In this paper, we propose an extension of
this model to the case of multidimensional ratings. Through our
model, we aim to exploit the dependency between not only the
annotators but also the entries in the multidimensional ratings.
The goal of this work is an accurate prediction of the ground
truth to address the issues of rating cost and cognitive load on

the annotators. We test several settings of our model incorporat-
ing various independence assumptions and partial availability of
a few rating dimensions and present our results.

Several previous works have modeled ratings from multi-
ple annotators, each assuming a different dependency structure
between the ratings for a data instance and the ground truth cor-
responding to it. In the model proposed by Raykar et al. [3],
a discriminative function encodes the relation between a data
instance’s features and the ground truth. Furthermore, ratings
from each annotator are considered to be noisy versions of the
ground truth. Audhkhasi et al. [6] extended this model con-
sidering the distribution of the annotator noises to be dependent
on the distribution of the features in the data. Gupta et al. [5]
proposed an extension of model proposed by Raykar et al. to
model continuous time-series ratings from multiple annotators.
On the other hand modeling multidimensional ratings has been
well studied in the field of multitask learning [7]. Example ap-
plications include natural language processing [8], medical risk
evaluation [9] and phoneme recognition [10]. Despite the in-
dependent progress in multiple annotator modeling and multi-
task learning, the problem of modeling multidimensional rat-
ings from multiple annotators has not been investigated in the
past. We attend to this issue as the subject of this study.

Akin to the training algorithm suggested by Raykar et al.
[3], our model is also trained using an Expectation Maximiza-
tion (EM) algorithm [11]. The EM algorithm is an iterative pro-
cedure in which we first estimate the hidden ground truth for
the multidimensional ratings (E-step) and use it to compute the
model parameters (M-step). We test the model on the Safari
Bob dataset [12], which involves children watching and imi-
tating emotional expressions from a video. The videos are an-
notated by multiple annotators over Amazon Mechanical Turk
(M-Turk) on the dimensions of expressivity, naturalness, pro-
nunciation goodness and engagement. To evaluate the model,
we make predictions on the annotator ratings over the four di-
mensions. We further present an extension to our model using
which we can reduce the number of entries queried in the mul-
tidimensional rating to each annotator. This is desirable both
in terms of cost effectiveness as well as reducing the cognitive
load on the annotators. We test our model for accurate anno-
tator prediction under three different settings of the proposed
model: (i) joint annotator-independent rating modeling (ii) joint
annotator - joint rating modeling and, (iii) conditional modeling
assuming partial availability of a few dimensions from the mul-
tidimensional rating. We compare these three settings to a base-
line model directly modeling each annotator individually. Us-
ing these three modeling schemes we aim to answer questions
related to the improvements obtained from collective modeling
of attributes over independent modeling and, improvements in
prediction with the availability of judgments on a subset of at-
tributes on the remaining attributes. We show that the models
we propose perform better than the chosen baseline. We also
perform a follow up experiment by subsequent removal of an-
notators with fewer ratings and comment on the gains obtained
for each model setting.
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Figure 1: Graphical model representation for the proposed

model. xn is the set of features for the nth instance, a∗
n is the

latent ground truth and ak
n is the rating provided by the kth an-

notator for that instance. xn and ak
n are observed variables, a∗

n

is latent. An is the set of annotator ratings for the nth instance.

2. Multiple annotator modeling
Consider a set of N data points with features {x1, ..,xN}; xn

being the feature vector corresponding to the nth instance. Each
data point is associated with a D dimensional ground truth for
which judgment from several annotators are pooled. In this
work, we assume that each datapoint is annotated by a subset
of K annotators. This is a more general setting than assuming
that the ratings are available from every annotator (as assumed
in [3]), and is often the case with data collection over online
platforms such as M-Turk. We represent the set of ratings for

the nth data point by a set An. For example, if annotators 1,2
and 5 provided their ratings (out of K annotators), An would be

the set {a1
n,a

2
n,a

5
n}, where ak

n is the multidimensional rating

from the kth annotator. The vector ak
n is a D-dimensional vec-

tor, represented as {ak
n,1, .., a

k
n,d, .., a

k
n,D}, where ak

n,d is the

rating by the kth annotator for the dth dimension correspond-
ing to the data point n. Armed with this notation, we train a
multiple annotator model shown as a graphical model in Fig-
ure 1. This model is inspired from the works of Raykar et al.
[3] and Gupta et al. [5]. The model assumes that there exists
a latent ground truth a∗

n (also of dimensionality D), which is
conditioned on the data features. The relationship between the
features and a∗

n is captured by the function f(xn|θ), with pa-
rameter θ. We assume f to be an affine projection of the feature
vectors as shown in (1), with θ being the projection matrix.

a∗
n = f(xn|θ) = θT

[
xn

1

]
(1)

The model further assumes that each annotator’s ratings are
noisy modifications of the ground truth a∗

n. We assume these
modifications to be the addition of an D-dimensional Gaussian
noise with distributionN (μk,Σk), as shown in (2). μk andΣk

represent the mean and co-variance matrix of this distribution,
respectively.

ak
n = a∗

n + ηk, where ηk ∼ N (μk,Σk) (2)

2.1. Model training

We estimate the model parameters by maximizing the data log-
likelihood. Since the model contains a latent variable (the ground
truth an

∗ ), we adopt the Expectation Maximization algorithm
[11] widely used for similar settings. During model training,
our objective is to estimate the model parameters Φ = {θ,μ1,
Σ1, ..,μK ,ΣK} that maximize the log-likelihood L of the ob-
served annotator ratings, given the features. Assuming indepen-
dent data points, L is given by

L = log

N∏
n=1

p(An|xn,Φ) =

N∑
n=1

log p(An|xn,Φ) (3)

The EM algorithm iteratively performs an E-step followed by
an M-step. A detailed derivation of these steps for the EM al-
gorithm can be referred from various resources as [11], [4] and
[6]. We specifically refer the reader to the EM algorithm deriva-
tion in [5] for a multiple annotator model similar to the one pre-
sented in this paper. The authors in [5] perform a hard version of
EM algorithm where in the E-step an estimate of ground truth
a∗
n is computed. This is followed by parameter update in the

M-step based on the estimated a∗
n. Popular methods such as

Viterbi training [13] and K-means clustering [14] are variants
of the hard EM algorithm for training Hidden Markov Mod-
els and clustering, respectively. Borrowing formulations from
the aforementioned research studies, we summarize the E and
M steps for obtaining the parameters for the graphical model
shown in Figure 1.

EM algorithm

Initialize the model parameters Φ
While the data log-likelihood L converges, perform
E-step: Estimate the ground truth a∗

n ∀n = 1..N using the

optimization stated below. ||.||2 represents the l2-norm in (4).

a∗
n = argmin

a∗
n

∑
k=Set of

annotators in An

∣∣∣∣Σ− 1
2

k (ak
n − a∗

n − μk)
∣∣∣∣2

2

+
∣∣∣∣a∗

n − θT

[
xn

1

] ∣∣∣∣2
2

(4)

M-step: Estimate the model parameters Φ as shown below. Nk

is the number of datapoints annotated by annotator k.

μk =
1

Nk

∑
n′=Set of datapoints
rated by annotator k

(
ak
n′ − a∗

n′

)
(5)

Σk =
1

Nk − 1

∑
n′=Set of datapoints
rated by annotator k

(
(ak

n′ − a∗
n′ − μk)

∗(ak
n′ − a∗

n′ − μk)
T

) (6)

θ = argmin
θ

∑
n

(∣∣∣∣a∗
n − θT

[
xn

1

] ∣∣∣∣2
2

)
(7)

2.2. Model testing

As mentioned before, the goal of our experiments in this work
is to predict back the annotator rating, which can be used to ad-
dress the issue of annotation cost and reducing cognitive load on
the annotator by partial prediction of the annotator’s ratings. We
would like to note that, though our model estimates the latent
values for above dimensions, it is hard to evaluate using these
since they are unobserved and often subjective in the dataset of
interest (as is true for several datasets in the Behavioral Signal
Processing domain [15]). In order to predict the rating for the

nth file from the kth annotator, we first predict an
∗ following (1)

and then add the mean μk of the noise distributionN (μk,Σk),
corresponding to the kth annotator. Note that adding μk to a∗

n

provides the maximum likelihood estimate of ak
n thanks to (2)

and the Gaussian noise assumption [16].
We use Mean Squared Error (MSE) computed per rating

dimension, averaged over all the annotators as our evaluation
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Acoustic- Audio intensity, mel-frequency band, mel-

prosodic signals frequency cepstral coefficients and pitch

Statistical Mean, median, standard deviation,

functionals range, skewness and kurtosis

Table 1: Acoustic prosodic signals and their statistical function-

als used as features xn in this study.

metric. For the dimension d (out of D dimensions), we com-
pute the MSE Ed as shown in (8). Ink is an indicator variable

marking if the kth rater annotated the data point n (equation (9)).

ak
n,d is the true rating obtained from the rater k on data point n

and âk
n,d is the model prediction.

Ed =

∑N
n=1

∑K
k=1 Ink(a

k
n,d − âk

n,d)
2∑N

n=1

∑K
k=1 Ink

(8)

where

Ink =

{
1 if annotator k annotates data point n
0 otherwise

(9)

We choose this metric as it allows for evaluation on each
rating dimension independently. Such a metric is particularly
relevant in the Behavioral Signal Processing domain where an
evaluation on each dimension of rating is desired. In the next
section, we describe the dataset used in this study.

3. Data
We evaluate our model using the SafariBob dataset [12]. The
dataset contains multimodal recordings of children watching
and imitating video stimuli, each corresponding to a different
emotional expression. We extract audio clips from each of these
recordings which are annotated over M-Turk. For the purpose
of our experiments, we use a set of 244 audio clips (each ap-
proximately 25-30 seconds) which were rated over M-Turk by
a set of 124 naive annotators. The annotators provide a four di-
mensional rating (D = 4), providing their judgments on expres-
siveness, naturalness, goodness of pronunciation and engage-
ment of the speaker in each audio clip. The numeric values of
these attributes lies in the range of 1 to 5. Each utterance in the
data set is annotated by a subset of 15 (out of 124) annotators.
This setting is subsumed by the model proposed in section 2.
For further details on the dataset, we refer the reader to [12].

3.1. Feature set
We use various statistical functionals computed over a set of
acoustic-prosodic properties of the utterance resulting in a set of
474 features (xn) per file. These features are inspired by prior
works in speech emotion recognition [17, 18]. The list of the
signals and their statistical functionals used as features is shown
in Table 1. In the next section, we describe our experimental
setup including the baseline model and test different variants of
the model described in section 2.

4. Experiments
Based on the approach described in section 2, we train models
with different assumptions. Since our goal in these experiments
is to predict the annotator ratings, we initially train a baseline
system individually modeling every annotator. This is followed
by various modifications of the proposed model to predict an-
notator ratings. We discuss these models in detail below.

4.1. Baseline: Individual annotator modeling
For the baseline, we train individual models for each annotator,
instead of the joint model described in section 2. We use an
affine projection scheme, for which the relationship between the

kth annotator’s ratings and features is shown in (10). θk is the

projection matrix for the kth annotator. The parameter θk is
obtained using minimum mean squared error criterion on the
training set, using data points that the annotator rated.

ak
n = f(xn|θk) = θT

k

[
xn

1

]
(10)

4.2. Joint annotator - Independent rating (Joint-Ind) mod-
eling
In this scheme, we train the joint annotator model assuming in-
dependence between each dimension in the multidimensional
rating. This is achieved by training a separate model for each

annotator dimension entry ak
n,d. The training procedure is same

as presented in section 2, with the special case of ratings being
scalar. Consequently, we end up with D = 4 different models,
one for each dimension. The goal of this model is to identify
the benefit of modeling all the annotators jointly, but with an
independence assumption between rating dimensions enforced.

4.3. Joint annotator - Joint rating (Joint-Joint) modeling
We next model both the annotators and the ratings jointly as de-
scribed in section 2. For each annotator we end up with multi-
dimensional parameters (μk,Σk) spanning all four dimensions,
which are in turn used to predict the annotator’s rating for each
data instance. We expect this model to capture any joint rela-
tionship between the different dimensions in the ratings, which
was not modeled by the previous Joint-Ind model.

4.4. Joint annotator - Conditional rating (Joint-Cond) mod-
eling
The Joint-Cond model is an extension of the model described
in section 4.3. In this scheme, we assume partial availability of
annotator ratings on a few dimensions. We then use the known
distribution parameters for that annotator and the available par-
tial rating to predict the missing dimension. For the sake of
brevity we focus on the case when only one of the rating di-
mensions is missing, noting however that other cases with more
than one missing dimension are entirely straightforward. The
primary goal of this model is to reduce cognitive load on the
annotator by asking him/her to annotate a subset of the rating
dimensions.

We represent the available subset of rating dimensions in

the vector ak
n, barring rating ak

n,d of dimension d as ak
n,/d.

Further, we represent the means and co-variance matrix entries

corresponding to the dimensions barring dimension d as μk
n,/d

and Σk
n,/d. In our specific case, μk

n,/d and Σk
n,/d would be of

dimensionalities 3× 1 and 3× 3, respectively. Also, the entries

within Σk
n storing the co-variances between the dimension d

and other dimensions is represented as Γk
n,d. Γk

n,d is a vector of
dimensionality 1×3. Now, given that the Joint annotator - Joint
rating model prediction for the rating at dimension d was given

by âk
n,d, we update it to âk

n,d+ with the availability of ak
n,/d as

shown in (11). This equation follows from the computation of
conditional Gaussian distribution from a joint Gaussian distri-
bution, given partial availability of some of the variables [16].

âk
n,d+ = âk

n,d + Γk
n,d(Σ

k
n,/d)

−1(ak
n,/d − μk

n,/d) (11)

We report the MSE Ed, ∀d ∈ 1, .., 4 separately.

5. Results
We report results from two different experiment settings for the
models described above. In the first setting, we use ratings from
all annotators over the entire data. However, as some of the
annotators only annotated a handful of data points (as few as
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Figure 2: MSE Ed for the four (baseline, Joint-Ind, Joint-Joint and Joint-Cond) modeling schemes as annotators with less than a thresh-

old count of ratings are dropped. Y-axis represents Ed and X-axis represents the minimum number of annotations (cutoff threshold).

Dimension d 1 (Ex) 2 (Na) 3 (Go) 4 (En)

Baseline 11.00 10.25 13.86 13.81

Joint-Ind 0.82 0.72 0.76 0.92

Joint-Joint 0.80 0.74 0.69 0.87

Joint-Cond 1.28 3.97 26.08 9.89

Table 2: MSE Ed for annotator label prediction on the four

rating dimensions; Ex: Expressiveness, Na: Naturalness, Go:

Goodness of Pronunciation, En: Engagement

2 data points), in the second setting we discard annotators with
fewer than a threshold number of ratings. This allows for a more
robust estimation of parameters (μk,Σk) per annotator. We use
a 10 fold cross validation scheme over each annotator for all the
models.

5.1. Setting 1: Training on data from all annotators
We first compare the different models by including all the an-
notators in our corpus irrespective of the amount of data they
annotated. The metric Ed for every dimension d is shown in
table 2.

From the table, we observe that the Joint-Ind and Joint-
Joint models outperform the chosen baseline predictor in all the
cases. The Joint-Joint model shows the best performance in 3
out of 4 cases. It makes use of the joint information in the data
to make accurate predictions on the annotator ratings rendering
confidence in the model’s ability to reliably estimate the hidden
ground truth along with the model parameters, making this the
most desirable model in most cases including when the number
of ratings per annotator are low. The Joint-Cond model does
better than baseline for expressiveness, naturalness and engage-
ment but fares much worse on pronunciation goodness. We at-
tribute this to poor parameter estimation particularly on annota-
tors with a small number of ratings. In particular the co-variance
matrixΣk is poorly estimated for most annotators, which plays
an important role in determining the Joint-Cond estimate. We
expect the model to do well when a sufficient amount of rating
is available from every annotator, which is discussed in the next
section.

5.2. Setting 2: Training on annotators with more than a
threshold count of ratings
In this setting, we iteratively remove annotators if they rated
fewer than a threshold number of data samples. The metric Ed is
then computed only on the retained annotators. The progression

of Ed as we increase the threshold is shown in Figure 2.

From Figure 2, we observe similar performance trends as
the previous section when the cutoff threshold is low. How-
ever, as the minimum number of annotations is increased, the
baseline and Joint-Cond models show marked improvements in
performance, while the Joint-Ind and Joint-Joint models’ per-
formance remains more or less consistent. The improvement is
significantly better for the Joint-Cond model and it outperforms
the Joint-Ind and Joint-Joint beyond a certain threshold for all
the rating dimensions. Hence we can use the Joint-Cond model
to reduce the dimensionality of queries made to a given annota-
tor, after a sufficient number of ratings are collected for him/her,
in turn reducing the annotator’s cognitive load and overall an-
notation cost.

6. Conclusion
Ratings from multiple annotators are often pooled in several ap-
plications with a latent ground truth. Several previous works
[3] have proposed joint modeling methods for modeling these
ratings from multiple annotators. However, such models were
not investigated in the case of multidimensional ratings. In this
work, we presented a multiple annotator model for multidimen-
sional labels and proposed variants which were applied to the
task of predicting back annotator labels. We tested the models
on the SafariBob dataset with four dimensional ratings and ob-
served that the proposed models outperformed the baseline and
provide mechanisms to make low error label predictions. A fur-
ther extension was proposed which was shown to be useful in
reducing the dimension of ratings presented to annotators after
we obtain sufficiently confident parameters.

Future work includes expanding the models to incorporate
different types of noises that reflect annotator types such as
naive, adversary and/or agnostic. We also plan to expand the
model to provide theoretical bounds for prediction errors as a
function of the number of data points per annotator. Finally, the
model could also be extended to other studies (ex: in the do-
main of Behavioral Signal Processing) and parameters could be
analyzed in light of the domain knowledge for a greater impact.
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