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Abstract

This paper presents advances in Google’s hidden Markov model
(HMM)-driven unit selection speech synthesis system. We de-
scribe several improvements to the run-time system; these in-
clude minimal latency, high-quality and fast refresh cycle for
new voices. Traditionally unit selection synthesizers are limited
in terms of the amount of data they can handle and the real ap-
plications they are built for. That is even more critical for real-
life large-scale applications where high-quality is expected and
low latency is required given the available computational re-
sources. In this paper we present an optimized engine to handle
a large database at runtime, a composite unit search approach
for combining diphones and phrase-based units. In addition
a new voice building strategy for handling big databases and
keeping the building times low is presented.
Index Terms: speech synthesis, hybrid approaches, real-time,
unit selection

1. Introduction
Recent advances in text-to-speech (TTS) synthesis research led
to more intelligible and natural sounding synthetic speech than
a decade ago. The quality of modern TTS systems mostly de-
pends on the target domain (that can be limited or open) and
particular deployment requirements, such as server-side appli-
cations or mobile devices.

The two dominant TTS design trends can be divided into
concatenative and statistical approaches [1]. In this paper we
present the salient features of Google’s concatenative unit se-
lection system used in many products and applications. These
features were introduced in order to address the main chal-
lenges of unit selection synthesizers such as dealing with out-
of-domain requests and handling large databases in real-time
applications [2].

Our concatenation-based hybrid approach is based on the
target prediction framework proposed in [3]. We are extending
this framework with several improvements in different areas.
First, we have optimized the voice building procedure to speed
up the refresh cycle of new voices by an average of 65%. We
also describe an optimized unit search algorithm using an ex-
tended set of features for better prosody modeling. Finally we
introduce the improvements obtained by using longer units in
order to deal with limited domain requests.

This paper is organized as follows. Section 2 describes
the core of our unit selection system. Section 3 introduces the
main features of our new real-time engine. Section 4 presents
the improvements in the voice building system. Section 5 de-
scribes the approach for combining diphone and phrase-sized
units. Section 6 describes our experiments and presents the re-
sults. Finally, Section 7 concludes the paper.

2. The core unit selection system overview
There are several types of hybrid systems that use HMM for
unit selection. A full review of these can be found in [4]. Of
particular interest to us are the two systems described in [3]
and [5]. Similar to our approach, the system presented in [3]
utilizes a composite target and join cost approach, defined using
the HMM emission probabilities trained using the maximum-
likelihood (ML) criterion. In [5] a unit selection system is pre-
sented which uses HMMs to constrain the prosodic parameters
of target units.

Our unit selection system uses an HMM module to guide
the selection of diphone-sized candidate units. It employs
HMM emission probabilities trained using the ML criterion as
target costs and the mel-frequency cepstral coefficient (MFCC)
based ([6]) spectral differences for the join costs. The optimal
preselected diphone sequence is expected to be chosen from the
speech database to maximize the combined likelihood of the
acoustic and diphone duration models.

For a target utterance u of length K, let [u1, u2, . . . , uK ]
be a sequence of candidate units to realize it, and F =
[f1, f2, . . . , fK ] be the sequence of specification vectors, con-
taining linguistic and prosodic contexts.

From a large set of possible units to concatenate, the best
ones need to be chosen from the recorded database. The goal
is to find a sequence u∗ that minimizes the conventional unit
selection cost [7] as described below.

Two cost functions are defined: the target cost Ct(fk, uk)
is used to estimate the mismatch between the target specifica-
tion vector fk and the candidate unit uk; the concatenation cost
Cc(uk, uk+1) is used to estimate the smoothness of the acous-
tic signal when concatenating units uk and uk+1. Thus, the cost
of a realization u is

C(u,F) =

K∑
k=1

Ct(fk, uk) +

K∑
k=2

Cc(uk−1, uk) . (1)

Unit selection can then be formulated as the problem of
finding the optimal sequence of units u∗ from candidate se-
quences u that minimizes the total cost,

u∗ = argmin
u

C (u,F) . (2)

Our system uses models which are derived from a set of
units sharing the same linguistic features. For a target specifi-
cation fk, the context-dependent acoustic model determined by
clustered HMMs and decision trees is denoted by λk. The as-
sociated acoustic feature vector consists of a set of static and
dynamic features. For a whole utterance, the corresponding tar-
get models are: λ = [λ1, λ2, . . . , λK ].

Similarly, for each unit in the database, let ul = {λ(b)
i ,ol}

refer to its observation vector ol and to a contextual model from
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Figure 1: Diagram of the synthesis stage.

the database λ(b)
i . Mapping between units and a corresponding

HMM is given during alignment in the phoneme segmentation
stage. Note that a single model will map to multiple units.

The process to find the optimal sequence of units is depicted
in Figure (1) and works as follows.

Given an utterance, a target model is associated with its
contextual diphone (ctxk → λk). This is obtained by clustering
the linguistic contexts using a decision tree.

Using the target model λk for specification fk, the M clos-
est models are selected from the database {λ(b)

i1
, . . . , λ

(b)
iM
}. The

purpose is to have several candidate models for the computation
of target and join costs. We chooseM significantly smaller than
N , whereN denotes the total number of models that exist in the
database for the given diphone. This is because N can be large
and thus storing the correspondences for all N models can be
computationally prohibitive.

The closest M models are selected using a Kullback-
Leibler (KL) divergence-based unit preselection algorithm pro-
posed in [3]. The divergence D(λk, λ

(b)
i ) is computed between

the HMM of the target model (λk) and the HMM of each candi-
date model {λ(b)

i1
, . . . , λ

(b)
iM
}. We then select the M -best mod-

els with minimum KL divergence before the final minimization
process of the total cost. To minimize the run-time overhead the
KL divergences are computed offline as a symmetric matrix for
every two leaf nodes in the decision tree of each HMM state.

As the models under test share the transition matrix, the
distance between HMMs can be simplified as

D(λ1, λ2) ≤
S∑

i=1

1

1− aii
[d (N1i ,N2i) + d (N2i ,N1i)] ,

(3)
where S is the number of states, aii is the self-transition prob-
ability for state i and d is the the KL divergence between two
L-dimensional single mixture Gaussian distributions and can be
calculated as in [3].

Using HMMs in a preselection algorithm offers two main
advantages over traditional unit selection. First is the principled
statistical modeling of the input linguistic feature space guided
by the training data. As a consequence, this obviates the need
for excessive manual hand-tuning of unit selection weights.

Good selection of linguistic features is critical for HMM-
based unit selection algorithm. We use a large set of linguis-
tic features. These include triphones as well as information
at the syllable, word and phrase levels. These features distin-
guish phonological characteristics, prominence, phrasing, ac-
cent, syntax and intonation types. There are also positional fea-
tures (e.g. number of syllables to previous stressed syllable in
phrase) and syntactic dependencies (e.g. dependency depth or
dependency size to right lower bound) [8].

3. Proposed engine optimizations
The main factors that impact quality of a unit selection system
are the domain (which may be open or limited), database size
and capacity of the engine to search the data during runtime.
This section tackles the problem of how to preselect a large
amount of units while maintaining a low latency. The advances
that we are introducing in this paper are: 1. Using partial tar-
get cost computation within a heap to speed up unit preselec-
tion; 2. Significant speed ups in preselection by introducing the
concepts of Gaussian Sequence Signatures (GSS) and computa-
tion order trees (COT); 3. Integer quantization of MFCC coordi-
nates; and 4. Pruning certain paths during join cost calculations
depending on the accumulated cost while searching.

3.1. Model selection

When a model is selected, units are taken in deterministic or-
der and a linear search is conducted to compute the join cost.
The classical alternative [3] is to do unit scoring (i.e. maximiz-
ing the likelihood of the units with respect to a target spectrum
envelope) which completes the total target cost for each unit.
While this solution may be adequate for finding the best units,
it is not efficient performance-wise. We propose an admissi-
ble stopping criterion for the rapid selection of a subset of the
units that have the highest probability of being adequate for the
required context.

In our system all candidate models have to go through the
full computation of equation (3), which contributes to N ·S ·R
calls (N being the number of models in this diphone, S the
number of states and R the number of streams). However D
can be decomposed into multiple steps, say, D1 → D2 →
. . .DS = D, such that they contribute to the same amount
of computations of D and their values are non-decreasing, so
D1 ≤ D2 ≤ · · · ≤ DS = D.

As D is a summation of d’s and the latter is nonnegative,
we can define the recursion as

Ds(λ1, λ2) =

s∑
i=1

dstate(λ1, λ2, i)

= Ds−1(λ1, λ2) + dstate(λ1, λ2, s) .

Since Ds is non-decreasing, it can be treated as a lower bound
of the final distance D. We maintain a min-heap of partial
distances, iteratively update (from Ds to Ds+1) the top item
(whose partial distance is minimum at the moment) and adjust
its position in the heap. Whenever a top item is completed,
we pop it from the heap and check if enough units have been
gathered. If this condition is met, we stop the iteration. This
algorithm is correct because when an item is popped, its final
distance is already smallest compared to the partial distance of
all other items still in the tree.

Each update or popping from the root of the heap requires
O(logN) time so we are in the worst case usingO(S·N logN)
time. In practice, the number of calls to d is much smaller than
N · S ·R.

3.2. Gaussian sequence signatures

One potential speedup of the above algorithm is to aggregate the
identical computation procedures for different models. We de-
fine the GSS of a model to be the sequence of Gaussian integer
identifiers (GIDs) in all the states and streams of that model.
Some GIDs are widely shared among models in the same di-
phone; this provides us the opportunity to reduce the unneces-
sary computations. For example, the number of identical GSS
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Figure 2: An example COT for three state HMMs to compute D
for four GSS’ in diphone bi. The tuple in each node represent
(state index, Gaussian index) where stream ID is omitted. The
actual GID is listed at the bottom of the leaf nodes.

is only 35.07% of the number of models for diphone “ax-n” in
our database. The simplest idea is to group all models with the
identical GSS together, and copy the score from the GSS to the
model after the computation is finished. We make a map from
GSS to model set, and replace GSS during the computation of
the KL divergence and expand the set of the models after the
GSS is selected. This way we can substantially reduce both the
number of calls to d and the heap size.

To take this idea further, we can share partial distance cal-
culation for all models having the same partial GIDs, which is
directed by a COT. Each node in a COT defines a summand in
equation (3) to be added to the partial distance. Traversing a
path from root to the leaf node will give us the order of com-
putation for a GSS. For example, assuming we have only one
stream and three states, diphone bi could contain all the Gaus-
sian sequences depicted in Figure 2. Three GSS’ in bi have
their GID in state 2 to be g1. They are aggregated for only one
computation. We can regard the node (2, g1) as a collection of
GSS’ which match (∗, g1, ∗). Similarly (1, g2) represents GSS’
matching (g2, g1, ∗). Instead of GSS, we put nodes of the COT
into the heap (initially the root node). Whenever we pop the
node from the heap, we advance the computation suggested by
it’s children, and push them into the heap.

It is worth noting that when using the regular total cost de-
fined in equation (1), we can skip KL computation for d if all
the GSS in the diphone share the same GID because that dis-
tance component is constant for all candidates.

3.3. Quantization and Pruning

To further optimize the computation of join costs we use integer
quantization, taking advantage of the dynamic range of MFCC
values. We established in listening tests that integer quantiza-
tion did not affect quality.

In addition, we apply an admissible stopping criterion in the
local minimization of the unit selection Viterbi computation [9].
By sorting the results of the previous time step in ascending
order of path cost, we can abandon the minimization of the total
path cost for the current time step with no approximation error
whenever the path cost of the previous column is higher than
the current best result.

4. Voice building system
During voice building the following steps take place. First,
phone-level alignment is performed to obtain the phoneme
boundaries. This step uses phone HMMs trained over all ut-

terances and is relatively fast compared to the rest of the pro-
cess. We then perform diphone alignment that merges the half-
phone time boundaries from the previous step. Next, given
the diphone boundaries, the full-context HMM training involv-
ing expectation-maximization (EM) and decision tree cluster-
ing takes place [10]. In our left-to-right five states system
each HMM has different types of information in each model
(spectrum, fundamental frequency and aperiodicity), so in total
there are fifteen trees plus a duration model tree. Finally, the
last step pre-computes the score matrices containing KL diver-
gences among all leaf nodes of all decision trees.

The critical voice building part is the HMM training and
here we propose an alternative approach that preserves the qual-
ity of the system while dramatically reducing the execution
time. As described in section 2, the HMMs are used in the
voice for scoring purposes and not for parameter generation.
Hence we hypothesize that target costs are less dependent on
the state boundaries than speech reconstruction is. Therefore
training can be simplified in order to keep the Gaussian statis-
tics intact assuming that state boundaries are in fact not that
critical. Regular HMM training has two iterations of the fol-
lowing steps: (i) Viterbi initialization and re-estimation where
the state alignment is fixed. (ii) Embedded re-estimation where
state alignment is modified. (iii) Duration model re-estimation
is performed jointly with the rest of the models in the case of
Hidden Semi-Markov Models (HSMM) [11]. (iv) Decision tree
building using first and second order statistics.

Maximum likelihood estimates of the HMM state parame-
ters are given using the probability that an observation (i.e. in-
put frame of acoustic data) was produced by mixture m of state
j. This would normally be calculated by the forward-backward
algorithm during the EM re-estimation. What we propose is to
avoid the state re-estimation and simply compute the statistics
of those models assuming that the state boundaries are fixed.
This assumption dramatically simplifies the computation.

Since decision tree building uses state occupancy counts,
first and second-order statistics, we need to generate those based
solely on the number of examples. In addition, a large number
of models means that fewer samples will be available for esti-
mating each model, negatively impacting variance estimation.
The quality of variances has a direct impact on the size of de-
cision trees and hence on the overall quality of the synthesizer.
For this reason the use of variance flooring was introduced into
the system along with unsmoothed F0 contours.

5. Long units
There are basically two ways of achieving the ultimate unit se-
lection synthesizer with respect to the balance between natural-
ness and flexibility. On the one hand, the flexible approach aims
at producing natural speech synthesis by selecting small units
(e.g. diphones). On the other hand, the rigid approach seeks to
maintain naturalness by working in a constrained domain. The
main advantage of the rigid approach is the possibility of using
longer units (e.g. phrases) as the main concatenative unit.

An approach for long units was proposed in [12] where
phrase-sized units were taken intact from a large corpus. This
is shown to be adequate to express paralinguistic information
which otherwise would be very difficult to synthesize since it
would imply modifications of prosody and voice quality. An-
other alternative is to use concept to speech (CTS) synthesis
integrating the natural language generation (NLG) and the syn-
thesizer so that they share the same features [13].

Similarly, primitive synthesizers such as [14, 15, 16] prior-
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itized pre-recorded prompts in a template-based synthesis sys-
tem in order to minimize joins and maximize expressiveness.

We are revisiting those approaches to create a synthesizer
with non-uniform units favoring the longer ones and backing-
off to shorter ones when needed. To identify longer units we
propose to use a set of labels to retrieve the metadata of the
message. For this we are labeling the data with hints about the
content of the sentence [17] and its prosody. We also integrate
phrase-sized units into the lattice by using a trie data structure.
Phrase-sized chunks are treated as slightly favored candidate
units in addition to the normal units chosen by preselection; this
way, the Viterbi search will determine the best points to transi-
tion into and out of the template using generic units.

6. Experiments
We present mean opinion score (MOS) and AB tests. A total
of 173 test utterances were used. One subject could evaluate a
maximum of 30 stimuli. Each pair was evaluated by five sub-
jects in the AB test and by three subjects in the MOS tests. Sub-
jects used headphones.

6.1. Optimized engine

The new engine proposed in the previous sections reduced the
latency and gave the system the possibility of handling a larger
database during runtime. Ten-fold analysis of the required pro-
cessing time as a function of search unit count for US-English is
presented in Figure 3. Results for the previous baseline system
(blue) and the optimized system (green) indicated the possibil-
ity of using three times more search units with the optimiza-
tions.

Figure 3: Processing time in ms (average of ten-fold runs).

Table 1 shows the MOS for US-English and French synthe-
sis reached by all the optimizations to the engine while main-
taining a low latency. For both languages, the new system
involved 20% more linguistic features and three times more
search units compared to the baseline.

Table 1: MOS for new optimized engine.

Language Baseline Proposed
US-English 3.61 ± 0.1 3.82 ± 0.08

French 3.68 ± 0.11 3.85 ± 0.106

6.2. Long units

The impact of merging diphone and phrase-sized units was no-
ticeable for specific TTS applications. For US-English, the
overall effect of using longer units, as evaluated in an AB com-
parison test on in-domain lines, resulted in 0.331± 0.083 pref-
erence for the long units approach (p < 10−6); on a mixed test
set, the preference was 0.095± 0.042.

Furthermore, Table 2 showed the degradation MOS
(DMOS) quality evaluation results for US-English analyzing a
total of four domains (Domain I-IV), using both the long-units
technique and a revised database that is catered to this approach,
but is not larger in total size. Domain I and III contained a high
amount of labeled information and as we can see, using phrase-
sized units had a significant positive impact. It is worth noting
that Domain IV consisted mainly of out-of-domain lines but still
enjoyed an improvement.

Table 2: DMOS test results for US-English with long units.

Domain I Domain II Domain III Domain IV
+0.65 +0.47 +0.52 +0.25

6.3. Voice building

The objective of the voice building experiments was to validate
the new proposed strategy in terms of speed and quality degra-
dation. Table 3 contains the comparison of the time required to
build a voice for US-English, German, and Spanish.

Table 3: Building time in minutes.

Language Baseline Fast Speed-up (Percentage)
US-English 1140 126 80.1%

German 849 238 56.2%
Spanish 453 95 65.3%

In order to validate that the synthesis quality was preserved
regardless of the optimization in the voice building process, re-
sults from two AB comparison tests are presented. Table 4
shows the result for the AB test comparing fast voice build-
ing with 3-5 states against the regular voice building for US-
English. Four-state fast voice building and regular voice build-
ing showed no significant preference. Language-wise AB com-
parison for US-English, German, and Spanish further validated
the new proposed approach. The results presented in Table 5
showed no significant preference towards any of the two sys-
tems.

Table 4: AB test results for fast US-English voice building.

States Score p-value Preference
5 -0.169 ± 0.151 0.00301 Regular
4 -0.075 ± 0.148 0.350 No preference
3 -0.160 ± 0.148 0.00340 Regular

Table 5: AB test results for US-English, German, and Spanish.

Language Score p-value Preference
US-English 0.020 ± 0.155 0.823 No preference

German 0.043 ± 0.184 0.777 No preference
Spanish 0.084 ± 0.110 0.0759 No preference

7. Conclusions
In this paper we have presented new improvements to Google’s
unit selection synthesizer aimed at handling large amounts of
data during both runtime and voice building time. We have
presented a new voice building strategy that reduced the total
building time dramatically and we have shown to maintain qual-
ity. We have also presented a novel approach to cope with a
large database during runtime reducing latency and increasing
the quality. Finally we have shown an algorithm to merge di-
phone and phrase-sized units in a single framework to increase
the quality of the limited domain applications.
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