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ABSTRACT 
We address the problem of separating two audio sources from 
a single channel mixture recording. A novel method called 
Multi Layered Random Forest (MLRF) that learns a binary 
mask for both the sources is presented. Random Forest (RF) 
classifiers are trained for each frequency band of a source 
spectrogram. A specialized set of linear transformations are 
applied to a local time-frequency (T-F) neighborhood of the 
mixture that captures relevant local statistics. A sampling 
method is presented that efficiently samples T-F training bins 
in each frequency band. We draw equal numbers of dominant 
(more power) training samples from the two sources for RF 
classifiers that estimate the Ideal Binary Mask (IBM). An 
estimated IBM in a given layer is used to train a RF classifier 
in the next higher layer of the MLRF hierarchy. On average, 
MLRF performs better than deep Recurrent Neural Networks 
(RNNs) and Non-Negative Sparse Coding (NNSC) in signal-
to-noise ratio (SNR) of reconstructed audio, overall T-F bin 
classification accuracy, as well as PESQ and STOI scores. 
Additionally, we demonstrate the ability of the MLRF to 
correctly reconstruct T-F bins of the target even when the latter 
has lower power in that frequency band. 
Index Terms: monaural source separation, random forest, deep 
learning, CASA. 

1. Introduction 
Approaches that address the problem of estimating the 

underlying source signals of a mixture [1] can be extremely 
useful for speech recognition systems [2], in medical signal 
processing [3], [4]; as well as in hearing aid devices [5], [6]. 
The problem becomes more challenging when only monaural 
mixture recordings are available [7] and therefore is still an 
active area of research. 

One approach known as Computational Auditory Scene 
Analysis (CASA) uses binary masking for demixing [8], [9]. 
One goal of CASA [10] is to estimate the Ideal Binary Mask 
(IBM) consisting of the set of T-F bins associated with a given 
source. It has been shown that under certain conditions the 
reconstructed speech using IBMs provides the optimal SNR 
gain among all binary masks (BMs) [11] and is highly 
intelligible [12]. Therefore the T-F bins of IBMs are useful as 
training labels for classification systems such as commonly 
implemented deep learning architectures [13]–[15] or the Multi 
Layered Random Forest method proposed in this paper. 
Other approaches such as speech enhancement techniques 
include spectral subtraction, Wiener filtering, and subspace 
based methods [16]. The model-based approaches such as Non-
Negative Sparse Coding (NNSC) [17], [18] have been 
extensively used for separating audio signals such as speech, 

noise and music. Recently deep learning architectures such as 
Recurrent Neural Networks (RNNs) have shown state-of-the-
art performance in monaural source separation (MSS) [13], 
[19]. 

We propose a novel CASA method, called Multi Layered 
Random Forest (MLRF) for learning BMs for both audio 
sources in a mixture. The Random Forest (RF) method maps a 
high-dimensional input vector (features) to an output class (in 
our case 0 or 1) which is (a value of) a T-F bin in the BM. After 
a first classification, the BM is used to create additional features 
that are provided to the subsequent RF classifiers (later called 
layers). The final BM is then applied to a test mixture 
spectrogram to obtain estimates of the source spectrograms that 
are inverted back to the audio domain.  

In summary, our work makes four contributions. First, we 
train RF classifiers for individual frequency bands similar to 
[15], thereby enhancing the performance of MSS. This is 
motivated by the observation that T-F neighborhood statistics 
of structured audio data such as speech, music and others are 
frequency dependent [20]. We generate training mixtures by 
linearly adding T-F bins of the training spectrograms of the two 
sources, forming a training mixture spectrogram. The IBM 
determines the dominant source in a given T-F bin. Second, we 
introduce a sampling method that returns the temporal 
coordinates of both training spectrograms required to make a 
source specific training mixture sample for a given frequency 
band. To achieve a high classification recall for both sources 
simultaneously, an equal number of dominant samples are 
chosen for each source. Third, the input feature vectors are 
constructed using various linear transformations on a frequency 
specific T-F neighborhood. Four, we compare our results to a 
state-of-the-art deep learning approach [13], to NNSC [17] 
using generalized Kullback-Leibler (KL) divergence criteria 
and its BM version NNSC(BM) and demonstrate significant 
improvements. The MLRF method is described in Section 2, 
the experimental setup in Section 3, the results are discussed in 
Section 4, and conclusions are presented in Section 5. 

2. Methods 

2.1. Dynamic range compression 
To provide dynamic range compression, input training and 
testing signals are locally normalized using a Gaussian window:  

  �̃(�) = �(�)
�Ɲ(�,	,
)∗��(�)

  (1) 

where Ɲ(�, , �) = � �
��
� ⋅ �

�(���)�

���  is the normalized Gaussian 

function with mean  and variance ��, �(�) is the original audio 
signal, �̃(�) the normalized signal, and * the convolution 
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operator. For large Gaussian half-widths, this is comparable to 
root mean squared (RMS) [21] normalization of the whole 
signal.  

2.2. Spectrograms and binary masks 
As many separation tasks become more tractable after being 
projected to a higher dimensional representation, we create the 
spectrogram � of a normalized audio signal �̃ by computing the 
absolute value of its Short Time Fourier Transforms (STFT): 
  � = ∣STFT(�̃)∣   (2) 

During the training phase, the two independent training audio 
sources are processed using (1) and (2) to obtain the respective 
training spectrograms ��� and ���. T-F bins of an IBM are 
computed by comparing these source spectrograms for the same 
frequency � and different times �� and ��: 

       !"#��[(��, ��), �] = $1 ���[��, �] ≥ ���[��, �]
0 ���[��, �] < ���[��, �]&   (3) 

In the   literature, �� = ��, whereas the above definition allows 
for comparison of time-shifted spectrograms used in training 
(see Section 2.4). 

 During the test phase, the two independent test audio sources 
are processed using (1) and added to obtain an artificial test 
audio mixture. This mixture is processed using (2) to obtain the 
test mixture spectrogram '*. 

2.3. Frequency-wise classification with random 
forests 

The IBM of mixture data can be estimated with a binary 
classifier trained on synthesized mixtures. We train individual 
classifiers on single frequency bands to predict the IBM labels 
0 and 1.  

We choose RFs [22] as classifiers, motivated by their 
following properties: (1) Invariance towards monotonic 
transformations of input dimensions (i.e. exponentiation, or log 
transformation of spectrogram values); (2) robustness towards 
irrelevant input dimensions; (3) only a small set of dependency 
parameters are used (in particular the number of randomly 
chosen dimensions for splitting at each decision node); (4) 
trivial parallelization of the algorithm during training and 
prediction; (5) good interpretability of the separation task based 
on decision tree structures. 

2.4. Sampling the training T-F bins 
Mixtures created from the addition of diverse time-shifted 

versions of the training set are converted to training mixture 
spectrograms. From these mixtures, we obtain a single IBM 
label (0 or 1) for each T-F bin of a source-specific IBM. If +- 
and +. are the number of time bins of the training spectrograms, 
this results in +- ∙ +. potential mixtures. To provide 
simultaneous high recall for both sources, we take an equal 
number of samples from both IBM labels. 

To randomly sample for a specific label and obtain time 
points �� and �� for both sources, we pre-sort both sources at 
the particular frequency according to their T-F bin power and 
find the fraction of bins in source �2(� at frequency �) that have 
less power than a particular bin in source �2and vice versa. 
Drawing one sample from the resulting cumulative distribution 

requires a binary search on �2 and �2 and therefore O(log(+-) 
+log(+.)) operations. 

2.5. Feature extraction 

The RF algorithm learns decision trees on input feature vectors 
comprising three subsets: The first subset consists of the local 
neighborhood (of dimension 34 ∙ 32, where 34 and 32 are the 
temporal and spectral window widths) surrounding each T-F 
bin. An example is shown for the sample location �5, �5 (see 
Figure 1, top).  

 
Figure 1: Top: Multiple neighborhood windows (dotted and 
dashed lines) around a T-F bin (67, 87) in a log-power 
spectrogram of a speech mixture sample. Bottom: BM estimate 
in the first MLRF layer with blue color coding as 0 and red as 
1. Input vectors to the first layer (a) are formed from linear 
combinations of windowed inputs from the mixture 
spectrogram and to the second layer (b) are formed from linear 
combinations of windowed inputs from the mixture 
spectrogram and from the first-layer mask estimates (slanted 
arrows).  

For the second subset, we quantify the dissimilarities within the 
T-F neighborhood between the set 95 of mixture samples with 
only label 0, and the set 95,� with an equal number of both 
labels. A measure of this dissimilarity in one dimension is the 
ratio of variances of both sets. For multiple dimensions we look 
for the direction vector :5 in which this ratio is maximized, 
given by the following: 

    ;�>?;-
@A

@A
B∙C(DA,E)∙@A

@A
B∙C(DA)∙@A

                    (4) 

where Σ(95,�) and Σ(95) are the covariances of 95,� and 95 
respectively. This form can be recognized as a generalized 
Rayleigh quotient with the solution given by the largest 
eigenvalue and corresponding eigenvector of Σ(95)H� ∙ Σ(95,�). 
To obtain more than one direction vector, all of which are 
orthogonal to each other, we solve the eigenproblem for the 
related symmetric matrix: Σ(95,�) ∙ Σ(95)H� ∙ Σ(95)H� ∙ Σ(95,�). 
This method which we call symmetric covariance ratio 
projection (SCRP), is repeated for 9�. Preliminary tests gave 
slightly better separation for the first few components of SRCP 
for 95 and 9� than projecting onto the first few PCA components 
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of 95 and 9�. For the third subset, we use z-scored normalized 
T-F bin neighborhood and apply SCRP. The number of 
different neighborhood windows and corresponding window 
sizes for all subsets are free parameters of MLRF.  

2.6. Feature extraction for subsequent layers 

Subsequent layers train on an equal number of incorrectly 
classified samples and correctly classified samples from the 
previous layer. In each of these two groups, there are an equal 
number of samples with labels 0 and 1. Features for the 
subsequent layers contain the three subsets for the first layer as 
well as two additional subsets (See Figure 1) viz. the 
neighborhood of the binary mask provided by the previous 
layer, and SCRP applied to the predicted binary mask 
neighborhood. 

2.7. Binary mask predictions 
In the testing phase, the trained MLRF classifiers are used to 
predict the binary mask, "#*, an approximation of the true 
!"#* of a target, �*. We compute the estimates �I* of �* as 
follows �I*  = "#* ∘ '*, where ∘ is the Hadamard product. The 
estimate �I* for the other source �* is �I*  = (1 − "#*) ∘ '*. 
These estimates can be transformed to audio signals by using 
an inverse STFT [21].  

3. Experimental setup 
 

All simulations were run using MATLAB. Source 
separation is evaluated on speech data from the GRID corpus 
database [23] and artificially generated pink noise. All audio 
signals are sampled at 16 kHz. The performance of all methods 
are evaluated on 3 groups of audio mixtures viz. Male-Female, 
Male-Male and Male-Pink noise (5 pairs for each set). For every 
speech source in any mixture we use 100 sentences from the 
GRID corpus database. The training data comprises 80 of these 
sentences which are roughly 2 minutes and 10 seconds of clean 
speech for each of the speakers. The testing data comprises the 
remaining 20 sentences which are concatenated into roughly 40 
seconds of clean speech. We choose a normalization window 
width of 1s which is longer than typical human speech temporal 
patterns [24]. This normalization window width led to higher 
SNR gains for all methods in comparison to the results for an 
RMS based normalization over the entire data duration (data not 
shown). Artificial test mixtures are generated by linearly adding 
the two test audio sources at an input SNR of 0 dB. To compute 
the spectrograms, a Fourier window size of 1024 samples 
(equivalent to 64 ms) and 75% overlap between successive 
Hanning windows are used. Each spectrogram column thus 
contains 513 distinct frequency bands.  

Optimal parameters for all methods were chosen by 
maximizing the output SNR on a single randomly selected 
male-female pair. For MLRF, the number of random splitting 
dimensions chosen for each splitting node (M��.), the number 
of trees, the number of RF layers (N) and corresponding number 
of training samples in each layer (O�

P ) were fixed at 64, 300, 2 
and {O�

� = 15000; O�
� = 7000} respectively. Adding more trees 

to the random forests or using more training samples never 
resulted in a decrease of classification performance. Adding 
more layers did not give better performance, as sampling an 
equal number of correctly and incorrectly classified examples 
exhausts the training data more quickly. Adding the second 
layer did not improve the performance for the Male-Pink noise 

case possibly due to overfitting. For the first layer we chose nine 
different neighborhood windows of various size combinations 
according to Section 2.5 and chose four neighborhood windows 
for the second layer. The optimal parameters for RNN were 
chosen by maximizing the output SNR and are in agreement 
with [13]. The number of layers and nodes per layer were 
chosen to be 3 and 1000 respectively. The optimal parameter 
values for NNSC were chosen as in [21] which were also 
obtained by maximizing the SNR.  

4. Results and discussion 
 

The source separation performance is evaluated using 4 
metrics viz. Signal to Noise Ratio (SNR) [21], classification 
accuracy as percentage of correctly classified T-F bins between 
"#* and !"#*, PESQ [25] and STOI [26]. The SNR values 
tell us how close the reconstructed signal is to the target signal. 
The PESQ score reflect the quality of the reconstructed speech 
while the STOI score reflects its intelligibility. For the male-
female case, the typical power overlap in a frequency band is 
small compared to that in the male-male case. Therefore, in the 
male-female case we expect a good separation based on 
frequency specialized classifiers while the male-male case 
requires better recognition of local, source specific T-F patterns 
for good separation. The male-pink noise case poses a different 
challenge, as signals typically overlap more strongly in 
individual T-F bins and therefore it is difficult to separate for 
any of the binary classification methods. The results are 
summarized in Table 1.  

Though MLRF gives the highest mean scores for SNR 
(except the male-male case), both MLRF and RNN 
significantly outperformed NNSC methods. The classification 
accuracy for MLRF was found to be significantly better than 
other methods except for the male-pink noise case. A 
significantly high PESQ score for NNSC over all other binary 
classification methods in the male-pink noise case was 
observed. This possibly indicates that application of binary 
classification methods might be detrimental to the speech 
quality when applied on a noisy mixture. It has been shown that 
an improved quality of the reconstructed speech (higher PESQ 
scores), might not necessarily lead to improvements in speech 
intelligibility [27]. In fact, in the same study it is shown that 
some speech processing algorithms which achieve a significant 
improvement in quality might be accompanied by a decrease in 
intelligibility. The STOI metric has been shown to provide very 
high correlation (>0.9) with intelligibility scores provided by 
humans [26], [28], and is therefore also evaluated. MLRF 
performed significantly better against all other methods in all 3 
mixture cases. The use of multiple metrics for evaluation allows 
us to conclude on different aspects of the performance of the 
different methods. 

Different frequencies can have different roles in the 
perception of sound [29], [30]. Therefore, frequency-specific 
analysis of the results was also performed to evaluate 
performances of the various methods. Mean squared error 
computed between the target and estimated frequency bands 
(data not shown) indicated better performance of MLRF over 
all other methods especially in the higher frequency regions (>1 
KHz). MLRF uses an equal number of samples for both sources 
in each frequency band. As a result, high recall was achieved 
for the target even when its power fraction (fraction of the total 
power of a target in a mixture for a frequency band) was low. 
This holds true for both sources. This is depicted in Figure 2.
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Table 1. Performance of all algorithms in regards to different metrics for all 3 mixture cases. The best performance is shown 
in bold. In case a method performs significantly better (p < 0.05) than all others in a two tailed t-test, the result is marked 

with a *. Here MF: Male-Female, MM: Male-Male, MN: Male-Pink Noise 

Method Mean SNR (dB) 
(MF, MM, MN) 

Mean classification accuracy (%) 
(MF, MM, MN) 

Mean PESQ score 
(MF, MM, MN) 

Mean STOI score 
(MF, MM, MN) 

MLRF (10.32, 8.01, 8.60) (78.10*, 77.62*, 92.59) (2.30*, 2.00, 1.57) 
 

(0.87*, 0.86*, 0.79*) 

Deep RNN (10.24, 8.72, 8.52) (60.43, 62.37, 88.17) (1.98, 1.70, 1.57) 
 

(0.83, 0.83, 0.76) 

NNSC  (7.24, 5.11, 6.51) Not applicable (2.15, 2.06, 1.98*) 
 

(0.81, 0.79, 0.77) 

NNSC (BM) (7.51, 4.59, 7.17) (66.5, 63.38, 86.71) (2.03, 1.79, 1.63) 
 

(0.80, 0.76, 0.74) 

 
Figure 2: Frequency-wise comparison of the recall for MLRF, 
RNN and NNSC (BM). Shown as a dotted black line is the 
frequency-specific power fraction for this target source. MLRF 
uses equal number of samples for both sources which helps to 
preserve the non-dominant source. The RNN approach in 
contrast follows the power fraction curve and has lower recall 
for lower power fraction. In some frequency bands, recall is as 
low as 0% leading to the assignment of the mixture to the non-
target. 

Note that the figure 2. is shown only for one source. RNN in 
contrast follows the power fraction curve, resulting in low recall 
for low power fraction. A common criticism about methods 
based on neural networks is that they behave like a black box 
approach [31]. MLRF, in contrast, gives interpretable results 
yielding how the mixture space is partitioned at each step (node 
of the tree) therefore giving a deeper insight and transparency 
to the classification task. 

Other advantages of RF-based classification is that adding 
more trees does not result in overfitting [22]. Also, because RF 
classifiers for each frequency band and for each tree are learned 
independently of each other, each layer of the algorithm is 
easily parallelizable and viable for real-time source separation. 

Studies have shown that IBM in comparison to other 
masking methods improves speech intelligibility but not the 

quality of the reconstructed speech in a speech-noise mixtures 
[32]. In agreement with this observation, we found that for 
male-pink noise mixture, the NNSC approach achieved a higher 
PESQ score than the binary classification methods. As a 
possible workaround, MLRF can be extended to regression-
based random forests to generate soft masks which might better 
address this problem.  

It has been shown that humans can achieve nearly perfect 
speech perception when speech is demixed using IBMs [33], 
which is also supported by our high STOI scores. Human 
speech exhibits structure on both temporal [34], [24] and 
spectral scales [35], which helps in human auditory processing 
[34]. The temporal width in our  MLRF approach encompasses 
typical patterns in speech [24] and a spectral width that covers 
typical human pitch and a few harmonics [35]. 

5. Conclusion and future work 
 
In summary, this paper presents a novel RF-based approach for 
solving the monaural source separation problem. The MLRF 
method learns RF classifiers for individual frequency bands and 
approximates IBMs for each of the sources. A new sampling 
approach for efficiently drawing training samples is introduced. 
The input features exploit the properties of speech structure as 
they include the typical range of temporal and spectral patterns 
of speech. Overall, our method outperformed state-of-the-art 
approaches such as deep learning based on RNNs [13] and 
NNSC [17] on metrics covering SNR gain, classification 
accuracy, PESQ and STOI scores. Extensions to this work 
include MSS on more than two audio sources and its real-time 
implementation.  
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