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Abstract
Annotating audio data for the presence and location of speech
is a time-consuming and therefore costly task. This is mostly
because annotation precision greatly affects the performance of
the speech-activity detection (SAD) systems trained with this
data, which means that the annotation process must be careful
and detailed. Although significant amounts of data are already
annotated for speech presence and are available to train SAD
systems, these systems are known to perform poorly on chan-
nels that are not well-represented by the training data. How-
ever obtaining representative audio samples from a new chan-
nel is relative easy and this data can be used for training a new
SAD system or adapting one trained with larger amounts of mis-
matched data. This paper focuses on the problem of selecting
the best-possible subset of available audio data given a budgeted
time for annotation. We propose simple approaches for selec-
tion that lead to significant gains over naı̈ve methods that merely
select N full files at random. An approach that uses the frame-
level scores from a baseline system to select regions such that
the score distribution is uniformly sampled gives the best trade-
off across a variety of channel groups.
Index Terms: speech-activity detection, adaptation, annota-
tion, active learning

1. Introduction
Speech-activity detection (SAD) is an essential step in most
speech-processing tasks, such as speech, speaker and language
recognition. In these cases, algorithms usually rely on a SAD
stage to filter out non-speech, keeping only the regions contain-
ing speech, the information relevant for the task. SAD is also
a task in its own right in cases in which large amounts of audio
are collected and searched for speech, which is later given to a
human for manual analysis.

Currently, the best-performing SAD systems are based on
different kinds of deep neural networks (DNNs) trained on large
amounts of data [1, 2, 3, 4]. For optimal performance, the train-
ing data should be somewhat matched in terms of acoustic char-
acteristics to the data that the model will be applied to. When
mismatch is present, performance can degrade to unusable lev-
els, depending on the nature and degree of the mismatch. In
these cases, as we will show, using even a small amount of
matched labeled data to adapt the original model to the new
channel characteristics can greatly improve performance.

Although collecting audio data from a new channel is usu-
ally easy and cheap, annotating this data for the presence of
speech for training or adapting a SAD system is not an easy
task. Our experiments indicate that an error on the order of
a tenth of a second in the determination of the start and end
times of the speech regions may result in significant perfor-

mance degradation of the trained model. Hence, the boundaries
between speech and non-speech should be precisely labeled and
even short pauses in between spurts of speech should be labelled
as non-speech. For this reason, the process of annotating data
for training a SAD system is laborious and time-consuming.

In this paper, we assume a scenario where large amounts
of labeled data are available for training an initial SAD system
from a set of channels different from those used for testing. We
also assume that a certain amount of unlabelled data is available
for each test channel. The goal is then to select a subset of this
data for manual annotation, which can then be used for adapt-
ing the system to the channel or acoustic conditions of interest.
Given a certain budgeted time for selection, the challenge is se-
lecting the data as intelligently as possible to optimize the per-
formance of the final adapted system. This work was motivated
by the SAD evaluation organized as part of the Robust Auto-
matic Transcription of Speech (RATS) program of the Defense
Advanced Research Projects Agency (DARPA) .

In a general sense, our goal coincides with that of the field
of active learning (see, for example, [5] for a review of active
learning). In active learning, a certain amount of unlabeled
data is available for training. Iteratively, models are trained
with increasing subsets of this data, which are selected for their
potential to improve the training system performance at each
stage. Several different criteria are used for selecting data at
each stage, including selection of the samples with least certain
decisions, samples with less agreement across a variety of mod-
els, samples that would change the model the most if used for
training, and so on.

The SAD task, though, deviates from the usual active learn-
ing setup in that the unit or samples available for labelling are
not predefined. While we could consider the samples to be the
waveforms on one extreme, or the frames (10 millisecond snip-
pets of audio) at the other extreme, neither of these options is
ideal. Frames are too short to be labeled in isolation by a hu-
man for the presence of speech, while full waveforms might
be redundant when considered fully, depending on their length.
Ideally, we would like to give annotators small regions of audio
of a certain minimum duration (making annotation efficient),
optimally selected from across all available waveforms (mak-
ing them most useful for adaptation). These regions can po-
tentially be located anywhere within the available signals, may
be of variable length and contain both speech and non-speech.
Further, in most SAD systems, regions are not assigned a sin-
gle score measuring the system’s certainty about the decisions
made within that region. Rather, one score per frame is usu-
ally calculated. Hence, standard active learning techniques that
rely on a score computed by a previously-trained model to de-
termine the usefulness of a sample (a region in our case) cannot
be directly applied to SAD. These issues make the application
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of standard active learning techniques to SAD a non-trivial task.
In this work, we take first steps into the application of active

learning ideas for the SAD task. We focus on simple selection
approaches that, for simplicity, assume that a single stage of
annotation is performed, rather than an iterative process. At
this stage, the model trained with mismatched data can be used
for selecting the optimal regions for annotation. The selected
regions and their annotations are then used for adaptation of this
initial model. We show results for varying durations budgeted
for annotation, analyzing the effect of the selection algorithm
and the adaptation parameters.

2. DNN-Based SAD
DNN-based SAD systems are currently the state of the art
[1, 2, 3, 4]. These systems use as model a DNN trained to pre-
dict the posterior of the speech and non-speech classes at the
output layer. The posteriors are converted into log-likelihood
ratios (LLRs) by using Bayes rule, assuming equal priors for
both classes. In a final step, these LLRs are smoothed by av-
eraging their values over a rolling window, typically 31 to 71
frames long. The final SAD decisions are made by threshold-
ing these LLRs, with a threshold chosen based on the desired
operating point. For some applications, the resulting speech re-
gions (contiguous frames with LLR value above the threshold)
are padded with a certain number of frames on each side. This
padding reduces the amount of missed speech near the detected
speech regions while potentially increasing the false alarm rate.

Currently the best-performing SAD systems use a DNN
architecture including some short long-term memory (SLTM)
layer or layers [6]. In this work, though, we use the standard
feed-forward DNN architecture, with only two hidden layers of
sizes 500 and 100. Training is performed by using several itera-
tions of the backpropagation algorithm, with small mini-batches
and cross-entropy as the error metric. Iterations are stopped
when the performance in a held-out cross-validation set stops
improving. The held-out set is determined as a random 15%
of the available training waveforms. In our work we use mel-
frequency cepstral coefficients (MFCCs) concatenated over 31
frames to include contextual information as input to the DNN.

In this work, we assume a scenario where a large amount of
labelled data is available for training the SAD system, but this
data is mismatched to the channels of interest. For these chan-
nels, we only have small amounts of labelled data, dynamically
selected from within a larger set of unlabelled data by using the
different algorithms described in Section 3. In this scenario, we
have found that an efficient way of using this small amount of
data is to adapt the big mismatched model to it. The adaptation
is performed by doing additional iterations of back propagation,
using the mismatched model to initialize the parameters at the
first iteration. Convergence, in this case, is determined on all
the available data, because leaving even a small percent out for
cross-validation degrades final model performance.

The key for getting good performance with this method
when using small amounts of adaptation data is to control the
amount of change allowed in the adaptation iterations by us-
ing regularization. The regularization is done by adding a term
to the objective function given by the L2 norm of the model pa-
rameters with respect to the parameters in the previous iteration.
This term is weighted by a tunable factor that we call the regu-
larization factor. In our experiments, we explore a strategy for
fixing this value as a function of the amount of annotated data,
which results in significant gains with respect to using a fixed
value optimized for a certain duration.

3. Selecting Regions for Annotation
Annotating audio signals for the presence and location of
speech for use as SAD system training data is a time-consuming
task. Annotating approximate speech regions is generally rela-
tively easy, but selecting the exact bounds requires more careful
signal analysis. Unfortunately, the annotation precision directly
influences the quality of current DNN-based systems.

To assess the effect of annotation error on system perfor-
mance, we corrupted the annotations provided by the RATS
program by padding each speech region with 10 or 20 frames
(or 0.1 and 0.2 seconds) to each side. This padding emulates
what is likely to happen in quick annotation of speech regions:
short snippets of non-speech (breathing, hesitations) are sim-
ply absorbed into the surrounding speech regions and the start
and end times are stretched slightly into the non-speech regions
around them. Training the model with annotations corrupted by
10 frames of padding results in relative degradation between 10
and 18% with respect to the model trained with the original an-
notations, over the four channel groups described in Section 5.
When corrupting the annotations with 20 frames of padding, the
degradations increase to 18 to 35%. These results clearly indi-
cate the potentially large effect of the annotation error on SAD
performance. This finding justifies the large effort required to
carefully annotate data for SAD system training (or adaptation).

As mentioned above, in this work we assume a scenario
where an initial model is trained on data from channels different
from the one present in testing. We also assume that a relatively
large set of unlabelled samples from the channel of interest is
available for adaptation. The goal is then to select a subset of
this data of a certain budgeted duration B (measured in min-
utes) for annotation and then adaptation, aiming to optimize the
selection to obtain the best possible adapted model. In the fol-
lowing sections we explain the different approaches we use for
selecting regions for annotation.

3.1. Naı̈ve Selection
The naı̈ve selection approach, used as baseline in the RATS
SAD evaluation, is given by the following simple algorithm:
(1) given a certain random seed, sort the available files from the
channel of interest; (2) select audio starting from the start of the
first file going down the list until collecting B minutes of audio.
In this method, all selected files except the last one are used
fully for annotation.

3.2. Passive Selection
Another baseline used in the RATS SAD evaluation is given by
the following algorithm: (1) sort files as for the naı̈ve baseline;
(2) select audio from top to bottom files restricting selection to
the regions hypothesized by a baseline (unadapted) system as
being speech, after padding each speech region with two sec-
onds on each side, until B minutes of audio are collected. This
system simulates a scenario where the speech regions detected
by a baseline (unadapted) system are given to a user who cor-
rects the output when errors are found. The corrected detections
can then be used as annotations for adaptation. The padding of
speech regions is done to simulate the process a user might use
of listening for a moment before and after each hypothesized
region. The regions selected by this approach will only include
misses incurred by the baseline system when they occur within
two seconds of a detection speech region.

3.3. High Coverage Selection
Our proposed approach for region selection is as follows: (1)
split the requested duration B evenly across all available files;
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(2) if the resulting duration per file is less than a certain min-
imum duration M, randomly choose N files such that each file
gets at least this minimum duration assigned to it; (3) within
each file, decide the location of the requested audio using dif-
ferent criteria. In turn, the criteria for locating regions within
each file can be: evenly-spread, where the assigned duration is
divided into snippets of duration M, and the snippets are evenly
spread across the file; and uniform, where snippets of duration
M are located to sample the LLRs for that signal as uniformly as
possible. This last option requires, as the passive selection ap-
proach, that a baseline system is run to obtain the LLRs for each
signal. Once LLRs are computed and smoothed, as described in
Section 2, the mean LLRs over snippets of length M shifted one
frame at a time are computed. A value is then randomly chosen
from a uniform distribution within the minimum and maximum
of these LLR means. The M-duration snippet with the mean
LLR closest to this value is then selected. Next, another value
is drawn from the uniform distribution and the snippet with the
closest LLR is selected. If this region overlaps with the already
selected region, its borders are expanded around that region to
achieve a total duration of 2M, including the old snippet and
the new one (starting by expanding toward the end and revers-
ing toward the beginning of the file only if not enough frames
are available toward the end). This process continues until all
snippets are allocated. This way, when the assigned duration
for a certain file is significantly smaller than its total length, the
distribution of the mean LLR of the selected snippets will be
close to a uniform distribution. Once the assigned duration for
a file approaches its length, the distribution of the mean LLR of
the selected snippets will approach the actual LLR distribution
of the file, since almost the full file will be selected.

In all cases, we restrict a certain proportion (given by a tun-
able parameter) of the files to have one region located at the
introductory part of the file, defined to be the first 15 seconds
of each file. The purpose of this restriction is to ensure that any
special effects present at the beginning of the file, like hand-
shaking events between transmitter and receivers, hold-music
when calling a certain phone number, answering machine mes-
sage, etc., are well represented in the selected regions.

4. Multi-Condition SAD Database
The training data and the test data used in the experiments
came from to the Linguistic Data Consortium (LDC) collections
for the DARPA RATS program [7]. Conversational telephone
recordings (called source signals) were retransmitted using a
multilink transmission system at LDC. Several combinations of
transmitters and receivers were used to retransmit, resulting in
extremely noisy and distorted signals. For training, we used the
RATS SAD training data. Channel D was not included in the
SAD data due to annotation problems. The clean source was
included among the channels. This data contained 830 hours of
speech and 677 hours of non-speech. Given the large size of this
data set, during DNN training, we selected 1 every 10 frames.

For testing, we used four different types of channels, some
created by corrupting source signals from the RATS dataset. Ta-
ble 1 shows statistics on the different channel groups.
RATS: This group of channels is extracted from the RATS
novel channel collection, released by LDC in 2014. This data
was created by using different transmitter/receiver pairs, new
transmitter/receiver locations and longer distances than those
used in the original set used for model training in this work.
We used eight of the released channels (A, D, G, H, K, M, Q,
and R), discarding the ones with clear annotation problems and

Table 1: Statistics for different channel groups: number of chan-
nels, average adaptation size (in minutes), average test size (in
minutes) and average proportion of speech content on the test
data. Averages are taken across channels within the group.

Group #Chan Adapt Test Prop. Speech
RATS 8 96.9 54.0 38
RATS LSD 8 68.8 36.5 8
Codec 13 108.6 114.1 41
Music 4 108.6 114.1 41

omitting some channels for future evaluation on a held-out set
(these channels are not used for the results in this paper). During
development, the adaptation and test signals from those chan-
nels with gross annotation errors were discarded.
RATS LSD: We created low speech-density (LSD) data starting
from the RATS unseen channels above. To this end, for each
signal, a portion of the speech regions was randomly selected
for retention, adding up to a maximum of X% of the total final
file length, where X was chosen from a uniform distribution be-
tween 0 and 10. The speech regions not selected for retention
were cut from the audio. The resulting speech and non-speech
in the signal had characteristics identical to those of the original
signal. The goal of creating this data was to test whether algo-
rithms behave differently depending on the proportion of speech
present in the adaptation data. As we will see, this is definitely
the case, at least for some algorithms.
Codec: We created transcoded signals starting from 58 source
signals used for retransmitting the RATS data. Each of
these signals was encoded with a few different encoders and
transcoded back to sphere format. The encoders included in
the results in this paper are: AMRNB (12.2KHz and 5.9KHz),
CODEC2 (2.4KHz), G723-1 (6.3KHz), OPUS (4KHz and
8KHz) and OPUS-VBR (4KHz and 8KHz). The numbers in
parenthesis correspond to the encoding rates considered. For
four of these encoders we transcoded the signals six times in a
row to obtain, in some cases, highly degraded signals.
Music: We created signals corrupted with non-vocal music
at different signal-to-noise ratios (SNRs). We added different
short snippets of non-vocal music to the same source signals
used to create the Codec data. The music types were classic,
jazz and modern.

5. Experimental Setup
We trained a DNN SAD system by using the training data de-
scribed in Section 4. The DNN took 13-dimensional MFCC
features, normalized to have mean 0 and standard deviation of 1
over each file and each dimension. The DNN contained two hid-
den layers of sizes 500 and 100. This baseline DNN was used to
obtain the LLRs required for some of the selection approaches
and also used as the initial model for adaptation. The different
approaches described in Section 3 were used to select regions
for which annotations were retrieved, simulating the process of
annotation that would occur in practice. The features for those
regions as well as the annotations were then used to adapt the
baseline model to the channel of interest.

To analyze the effect of the different selection algorithms
as a function of the annotation time B, we swiped B logarith-
mically, from 1 to 32 minutes. We also show results for full
adaptation, where all available adaptation data for each chan-
nel was used for adaptation. Each selection approach was run
10 times with different random seeds and performance and the
time was averaged across runs for each value of B. For the full-
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Figure 1: Results when setting the regularization parameter r to
different fixed values and to 10/B. B, the x-axis, is the amount
of time annotated for adaptation (in minutes).

adaptation case, the seed was still used to shuffle the adaptation
features, resulting in 10 different results, although the data was
identical in all cases.

Two types of error can be computed for SAD: (1) the miss
rate (the proportion of speech frames labeled as non-speech)
and (2) the false alarm rate (the proportion of non-speech frames
labeled as speech). In Phase 4 of the RATS program, a “for-
giveness” collar of 2.0 seconds was used around all annotated
speech regions. False alarm errors over those regions were dis-
regarded. We use this same collar for our results. As in our pre-
vious SAD paper [4], here we used the actual DCF (or just DCF
for brevity) as the metric. We do not present the minimum DCF
values for lack of space. To obtain the DCFs we post-processed
the LLRs from each of the systems as described in Section 2 by
using an average filter of 41 frames, thresholded them at 0.0,
padded each resulting speech region with 0.3 seconds on each
side, and finally summed false alarm and miss rates for each
channel to calculate the DCF. The reported results are averages
across channels and random seeds within groups of channels.

6. Results
Figure 1 shows the results when using different fixed values for
the regularization parameter (0.1, 1.0 and 10.0) and when using
the proposed approach, where the parameter was set to 10/B
(B being the total annotated time in minutes). These results
correspond to the high coverage (HC) selection approach, with
evenly spread snippets of two second duration, forcing 50% of
the files to have one snippet located at the beginning of the file.
Clearly, fixed values of the regularization parameter cannot ac-
commodate all possible values of B: large values of regular-
ization are good for small B, while small values are good for
large B. The proposed approach, setting this parameter to 10/B,
strikes a good trade off, and is optimal in most cases. This is the
approach we used for setting the regularization value for subse-
quent results.

Figure 2 shows a comparison between the baseline selection
approaches and the two proposed ones. We see that, among the
two baseline approaches, the passive one is slightly better for
the two groups of RATS channels. This finding is most likely
due to the fact that the passive approach selects regions from
more unique files than the naı̈ve approach, because the naı̈ve
approach uses the full files to reach the budget, while the pas-
sive one only uses padded speech regions. Hence, the passive
approach indirectly enables for more coverage of files than the
naı̈ve one for the same B.

The two proposed high coverage approaches are quite com-
parable when the proportion of speech is close to 50% (RATS,
Codec, and Music). When this is not the case, for the RATS
LSD group, the uniform selection of regions gives a very clear
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Figure 2: Results comparing different selection approaches:
naı̈ve, passive, high coverage with evenly-spread region loca-
tion (hce) and high coverage with uniform region location (hcu).
The x-axis, B, is the same as in Figure 1.

advantage over the evenly spread one. This is because the
evenly-spread selection results in a low proportion of speech
frames being selected for annotation (and, hence, for adapta-
tion), approximately the same proportion available in the full
signal. On the other hand, the uniform selection criteria re-
sults in a higher percent of speech regions being selected, which
clearly benefits the final adapted model. For example, the per-
cent of speech in the selected regions for B=16 is 18%, versus
8% for all available data. We believe this is the reason why, for
this group of channels, selecting only 16 minutes leads to better
results than using all of the available data.

Finally, we note that our results indicate that, as long as the
regularization factor is chosen as proposed, the performance on
seen channels (that is, the channels present in the training data
for the baseline system) is not significantly affected by adapting
to data obtained with any of the presented selection techniques.
These results are not shown due to lack of space.

7. Conclusions
In this work, we take the first steps towards the application of
active learning ideas for the SAD task. Our results demonstrate
that simple techniques can greatly improve performance over
a naı̈ve approach consisting on selecting N full files adding up
to a desired budgeted duration. We also show that an approach
that uses the frame-level scores from a baseline system to select
regions such that the score distribution is uniformly sampled can
lead to significant gains when the signals only contain a small
proportion of speech. Further, we show that careful selection
of the regularization parameters during adaptation is essential.
Finally, the results indicate that, for some channels, just a few
minutes of carefully selected data can lead to results comparable
to those obtained with one to two hours of adaptation data. In
the future, we plan to continue working on selection techniques,
including options that preferentially select regions from certain
signals that might result in more useful adaptation. We will
also explore algorithms that attempt to select regions that are
purely speech or non-speech, which would greatly simplify the
annotation process.
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