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Abstract
Variation in fundamental frequency (F0) constitutes a valuable 
source of information for researches across many disciplines, 
with a shared interest in speech. Different methods for 
estimating F0 vary in estimation accuracy and accessibility, and 
there is yet no gold standard. Through a bibliometric survey, 
this study examines what methods were the most frequently 
used in the speech scientific community during the years 2010-
2016. Secondly, the most used methods are evaluated against a 
ground truth reference, with a specific focus on their accuracy 
in estimating F0 in male and female speakers, respectively. 
The results show that Praat is the dominant method by far, 
followed by STRAIGHT, RAPT and YIN. This pattern holds 
across a range of different research areas, although within 
Acoustics and Engineering, Praat’s dominance is less 
pronounced. In the evaluation including Praat, RAPT and YIN 
– with their default and gender-adapted settings – Praat also 
proved to be the most accurate. The finding that adapting 
Praat’s pitch range settings by gender leads to further 
improvements should encourage researchers to do this 
routinely. 
Index Terms: fundamental frequency, pitch tracking, pitch 
estimation, speech prosody, intonation. 

1. Introduction 
Estimation of the fundamental frequency (F0), or pitch tracking, 
underlies all data-driven analyses of intonation. Although large 
datasets require automatic procedures, there are known 
uncertainties involved in using existing methods, raising 
reliability as an obvious concern. However, although different 
F0 estimation methods are in use, there is no gold standard. This 
investigation sets out to survey which F0 estimation methods 
are currently the most well-spread, and to bench-mark these 
against a ground truth reference. 

Information regarding F0 in speech is relevant to a range of 
different research areas and applications. In basic linguistic 
research, F0 characteristics have been linked to various 
linguistic and pragmatic functions, e.g. conversational contrast 
[1] or interrogative signaling [2]. In dialogue systems, real-time 
analysis of the F0 contour may guide the interpretation of a 
speaker’s intentions [3]. In a clinical context, F0 is an important 
feature in the description of atypical prosodic and vocal features 
[4]. Within the field of acoustics, new pitch tracking algorithms 
are continuously suggested, for clean recordings of single 
speakers as well as for more challenging conditions. However, 
it is unclear to what extent these algorithms are accessible to 
researchers in other disciplines. 

Many approaches exist for estimating F0. In phonetic and 
linguistic research, Praat [5] has been referred to as “the de facto 
standard speech analysis program” [6], and is indeed a well-
spread software for the acoustic analysis of speech. For F0
estimation, the default method provided in Praat is the 
autocorrelation function [5]. Another flavor of the 
autocorrelation method is available in YIN [7], which has been 
referred to as “one of the most popular and most efficient 
methods of pitch estimation” [8]. The RAPT [9] algorithm (also 
referred to as ESPS or get_f0) is another well-known method, 
which instead uses a cross-correlation function. In most, if not 
all, speech analysis frameworks, users can adjust parameters 
like framerate and pitch range, to tailor their analysis to their 
purpose. F0 estimation accuracy varies across speakers, with 
accuracy generally being lower for female speakers than for 
male speakers [10]. As shown by Vogel and colleagues [11], 
adjusting the pitch-range settings by gender may improve F0
estimation accuracy, even to levels comparable to applying 
individualized speaker settings. However, little is known of 
whether such adjustments are generally made, and of the degree 
of improvement across different F0 estimation approaches.  

Many evaluations of F0 estimation methods have been 
presented during the years, for conditions involving different 
challenges (e.g. clean speech [10] [12], noisy conditions [8], 
multi-speaker conditions [13], and for singing voice [14]). 
According to Pirker et al. [15], YIN and RAPT are the best 
performing algorithms for F0 estimation in single speakers. 
Camacho [10] substantiated this statement, in finding YIN and 
RAPT performing at comparable levels, whereas Praat’s 
autocorrelation method performed slightly worse. According to 
a more recent evaluation by Ghahremani and colleagues [16], 
many off-the-shelf pitch trackers (YIN and RAPT included) are 
outperformed by Kaldi Pitch [16], an algorithm specifically 
tuned for automatic speech recognition. Such differences in 
evaluation outcomes may be contributed to different 
methodological choices. For example, whereas some 
evaluations base their statistics on instants where all candidate 
trackers agree on voicing (e.g. [10] [16]), the voiced/unvoiced 
decision is treated like a feature of the candidate trackers in 
other evaluations (e.g. [8] [17]). Hence, comparing outcomes 
across evaluations is not always straightforward. Additional 
concern may be raised regarding the fact that not all evaluations 
include the same trackers; this indicates that the selection of 
trackers is somewhat arbitrary.  

The accuracy of estimated glottal activity (as reflected in F0
frequency) is best evaluated with reference to recorded actual 
glottal activity, e.g. as described in [18]. The CSTR [18], the 
Mocha-TIMIT [19] and the Keele [20] corpora are well-known 
resources containing parallel recordings of laryngograph and 
microphone signals. A more recent database is the PTDB-TUG 
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corpus [15], which includes more speakers and more recorded 
sentences than previous resources. For a general purpose 
evaluation of F0 estimation approaches, PTDB-TUG therefore 
appears as the best available reference today. 

Without quantitative evidence, impressions that some F0
estimation approaches are more widely used than others remain 
subjective. Although evaluations of existing methods have been 
made, the selection of included approaches has not necessarily 
reflected their usage in the scientific community. Moreover, 
validations against ground truth references of smaller size may 
need to be updated when better reference materials become 
available. And finally, although evidence holds that adapting 
pitch range settings by speaker gender may improve F0
estimation accuracy, it is yet unknown to what extent such 
adjustments are actually made, and to what gain. The present 
paper addresses these concerns by investigating the following 
research questions: 

1. What F0 estimation methods have been used the most 
within the wide speech scientific community, during the 
last 5 years? 

2. How do these methods perform, when used “as-is”, and 
evaluated against the best available ground truth 
reference? 

3. For each of the methods evaluated, how is estimation 
accuracy affected by adapting settings by speaker 
gender? 

A bibliometric survey addressing the first research question is 
described in Section 2. Based on this survey, the most 
frequently used approaches are then evaluated against a ground 
truth reference; this evaluation is described in Section 3. Lastly, 
the findings are summarized and discussed in Section 4. 

2. Bibliometric survey 

2.1. Data retrieval 
The first research question, relating to what F0 estimation 
methods are currently in use, was explored through a 
bibliometric survey using the Web of Science (WoS), within its 
Core Collection. The search terms used to extract publications 
(articles or proceedings papers) were a) any of the terms pitch,
intonation, fundamental frequency or f0, together with any of 
the terms b) track*, estimat*, curve, contour, slope, rising or 
falling. Any one of the two terms speech or voice was also 
included as a required term. (For the speech alternative, the 
string prosod* was specified as a required term.) Research areas 
included were Acoustics, Computer Science, Communication 
and Linguistics1. The search was performed in the Web of 
Science on March 20, 2016, and included publications between 
2010 and 2016. Based on these criteria, the search resulted in 
360 hits. After the manual exclusion of publications describing 
non-human sounds (e.g. animals or musical instruments), 351 
items remained. 

2.2. Data analysis 
The 351 publications were manually examined with regards to 
whether they included any F0 estimation, and – if so – what 
                                                                 

1 In WoS, publications on phonetics (e.g. Journal of Phonetics) 
are listed under the research area Linguistics. 

specific method was used. If F0 values were referred to in the 
publication without any explicit specification regarding how 
these were derived, this was also noted. F0 estimation settings 
were noted if such were explicitly stated.  

Information regarding WoS research area classification was 
registered for all publications. In this analysis, many 
publications were counted multiple times, reflecting the fact 
that publications may represent more than one research area. 

2.3. Bibliometric results 
74 of the retrieved 351 publications were not accessible online, 
neither through the author’s university library, nor through a 
Google Scholar search. Of the remaining 277 publications, 128 
contained no information regarding F0 estimation. Of these, a 
substantial proportion constituted reports of F0 modelling or re-
synthesis (n = 53, e.g. [21], [22]), thus implicitly involving 
analysis of F0. In these, Hz values were often reported but with 
no explicit information regarding how these were derived.2 A 
minor proportion (n = 25) were publications that neither directly 
nor indirectly involved any F0 analysis, e.g. in reviews like [23], 
or in studies based on existing ToBI-annotated data, e.g. [24].  

Six publications included more than one F0 estimation 
algorithm [6] [14] [25]-[28]. For ease of interpretation, only the 
143 publications where one F0 estimation method was specified 
are included in the presentation in Table 1. As seen, in the 
majority of the publications where one F0 estimation method 
was specified, this method is Praat [5]. Of the 11 cases where 
information regarding the specific estimation algorithm was 
unavailable, but where software environment was specified, 3 
had employed Snack [29], 2 had used CSL3, whereas the 
remaining 6 had all been performed in different environments. 
In 17 of the 143 publications, the output from the automatic F0
estimation was checked (and potentially modified) manually. In 
9 of the 80 publications based on F0 estimation in Praat, the 
default pitch range setting (75-500 Hz) was modified across all 
speakers (n = 5), adapted by gender (n = 2), or by speaker (n = 
2).

Table 1. Methods used in the 143 publications where 
one F0 extraction algorithm was specified. 

Extraction method # of publications 
Praat 80 
RAPT 12 
N/A* 11 
STRAIGHT [30] 8 
YIN 5 
SWIPE [31] 3 
Hu & Wang [32] 2 
Others** 22  

Total 143 
* Information regarding the F0 analysis environment was 
specified, whereas the specific method was not. 
** Each appearing in only one publication. 

The 143 publications where one F0 estimation method was 
specified were also analyzed with regards to what research area 

2 In some of these publications, the authors referred to another 
publication for details regarding how F0 data had been derived. 
Such second-hand references were not included in this analysis. 
3 Computerized Speech Lab, PENTAX. 
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they represented. In this analysis, 7 areas represented by only 
one publication each were collapsed into a single category: 
“Other areas”. As indicated in Figure 1, Praat is the dominant 
method (> 60% of the publications) in most research areas. Only 
within Engineering and Acoustics, Praat’s dominance is less 
pronounced, falling below 50%. (NB: Figure 1 illustrates that, 
for example, YIN is represented in 7 research areas, which may 
seem contradictory to the data in Table 1, where YIN is reported 
in only 5 publications. However, this reflects the fact that a 
publication may represent more than one research area.) 

Figure 1. Number of publications using the different F0
estimation methods across different research areas.

3. Evaluation

3.1. Speech data 
The PTDB-TUG corpus [15] was used as a ground truth 
reference. This corpus contains 4720 recorded sentences from 
20 speakers (10 male and 10 female). The sentences are 
recorded both through microphone and laryngograph at a 48 
kHz sampling rate, with a 16 bit resolution. From this material, 
the reference F0 trace – as extracted by means of RAPT [9] from 
the high-pass filtered laryngograph signal as described in [15] – 
was used as the ground truth. Microphone signals were used as 
input to the F0 extraction as described below. 

3.2. F0 estimation 
Three of the four most frequently used F0 estimation methods, 
as reported above, were used: Praat [5], RAPT [9] and YIN [7]. 
These were selected on the basis of their frequency of use, and 
of their potential to run “as-is”, e.g. without relying on voicing 
decisions from other sources. (For this reason, STRAIGHT was 
not included in the analysis.) 

For all three methods, F0 values were computed in steps of 
0.01 seconds, thus matching the frame rate in the reference 
material. All methods were implemented with two different 
configuration settings; one with their respective default settings 
(described below), and one with pitch range values adapted by 
gender, according to the recommendations in the online Praat 
manual [33]. Hence, for male speakers, the pitch range was set 
to 75-300 Hz, and for female speakers to 100-500 Hz.  

For F0 estimation in Praat, the standard autocorrelation 
method was used. Default values were used in the standard 
configuration setting, with a pitch search range of 75-500 Hz. 
For the gender-adapted settings, the increased pitch floor from 
75 to 100 Hz in the female settings results in a reduced frame 

rate (93 frames/sec instead of 100 frames/sec in the default/male 
settings). To compensate for this reduction, the number of 
frames in the generated female pitch files was stretched by 
interpolation by a factor of 1.07. 

RAPT was run through an implementation in Snack [29], 
with default settings (method: ESPS, maxpitch: 400 Hz, 
minpitch: 60 Hz, window length: 0.0075). In the gender-
adapted version, pitch range was adapted as described above. 

YIN was run through a Matlab implementation available at 
[34]. In the standard configuration, default settings as described 
in [7] were used (minf0: 30 Hz and maxf0: SR/(4*dsratio), 
threshold: 0.1). In the gender-adapted configuration, pitch range 
settings were adapted as described above. 

3.3. Analysis 
The F0 traces yielded by each of the three extraction methods 
were each evaluated against the reference F0 traces in the 
PTDB-TUG corpus. In accordance with [8], the following 
evaluation metrics were used: 

� Gross Pitch Error (GPE): the proportion of frames 
– considered voiced by both pitch tracker and ground 
truth – where the relative pitch error is higher than 
20%.

� Fine Pitch Error (FPE): the standard deviation of 
the distribution of relative error values (in cents) from 
the frames that do not have gross pitch errors. 

� Voicing Decision Error (VDE): the proportion of 
frames for which an incorrect voiced/unvoiced 
decision is made. 

� F0 Frame Error (FFE): the proportion of frames for 
which an error (either according to the GPE or the 
VDE criterion) is made. FFE can be considered a 
single measure of overall performance [17]. 

3.4. Evaluation results 
Table 2 displays the results of the evaluation of the different F0
estimation methods, for female and male speakers, and for the 
group as a whole. It is clear from the figures in Table 2 that 
Praat’s overall performance, as estimated by the FFE, is better 
than that of both RAPT and YIN. However, it is also clear that 
this pattern is largely driven by Praat’s superior accuracy in 
detecting voicing, particularly when compared to YIN; in this 
respect, YIN does not at all meet the performance of the other 
trackers. A closer look at the YIN’s inaccurate voicing 
decisions reveals that a majority of these errors (93% in the 
default setting, and 79% in the gender-adapted setting) are cases 
of over-identification of voicing. It should be observed, 
however, that on frames where the three candidate trackers 
agree with the reference data on voicing (66-75% for YIN, as 
compared to 95% for Praat), YIN is more accurate (as measured 
both by GPE and FPE) than the other two candidates, although 
the advantage over Praat is quite marginal. 

Adaption of pitch range settings by gender is most 
beneficial for Praat, whereas the positive effects of a similar 
adaption for RAPT and YIN are less obvious. For YIN, in fact, 
the gender-adapted settings generally lead to deteriorated 
accuracy. For Praat, however, the adapted settings benefits the 
F0 estimation accuracy for both female and male speakers. 
However, not even in the gender-adapted version of Praat does 
the FFE for female speakers reach the performance on male 
speakers in the non-adapted/default version.

0 10 20 30 40 50 60

Other areas (n=7)
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Psychology (n=9)

Audiol. & SLP (n=34)
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Table 2. Evaluation results for the three F0 estimation methods, with default (def.) and gender-adapted (m/f) settings.

Method 
Female speakers Male speakers All speakers 

GPE
(%) 

FPE
(cents) 

VDE
(%) 

FFE 
(%) 

GPE
(%) 

FPE
(cents) 

VDE
(%) 

FFE 
(%) 

GPE
(%) 

FPE
(cents) 

VDE
(%) 

FFE 
(%) 

Praat (def.) 2.33 30.47 5.06 7.39 1.83 37.10 4.87 6.70 2.09 33.83 4.96 7.05 
Praat (m/f) 2.10 28.85 4.82 6.92 1.28 34.82 4.18 5.47 1.69 31.91 4.51 6.20 

RAPT (def.) 3.89 41.87 8.88 12.77 5.47 48.17 6.81 12.29 4.67 44.95 7.86 12.53 
RAPT (m/f) 3.86 41.90 8.39 12.25 4.90 48.13 7.51 12.41 4.37 44.86 7.96 12.33 
YIN (def.) 1.66 31.18 24.17 25.83 1.12 32.61 26.78 27.90 1.39 31.85 25.47 26.86 
YIN (m/f) 1.80 25.52 34.28 36.08 1.32 29.40 33.34 34.65 1.56 27.49 33.81 35.38 

4. Discussion 
By surveying the last five years’ literature for speech-related 
studies involving F0 estimation, the present investigation has 
identified Praat, RAPT, STRAIGHT and YIN as the most 
frequently used. By evaluating three of these methods against 
a state-of-the-art ground truth reference, it was further shown 
that the most frequently used method – Praat – was also the 
most accurate. Moreover, the comparison of gender-adapted 
pitch range settings against default settings revealed that – at 
least for Praat – accuracy could be further improved by 
applying different settings for male and female speakers.  

A secondary finding in the bibliometric survey is the 
distribution of different F0 estimation methods across research 
areas. Praat was found to hold a position as the dominant 
method across a wide range of research areas, such as 
Linguistics, Computer Science and Audiology & Speech-
Language Pathology. On the other hand, many methods or 
algorithms are reported in single or few studies, particularly 
within Engineering and Acoustics. Considering that these are 
the areas where much of the development of new methods 
presumably takes place, this should not come as a surprise. 
Time will tell if any of these methods will be more frequently 
used in the future. A rather discomforting discovery was that 
many studies report F0 values but with no specification 
regarding how these were derived. From the perspective of 
replicability and reliability, this is – of course – unfortunate. 

In any bibliometric survey, there is a chance that the search 
criteria may not cover all relevant publications. This risk is 
present also here. Moreover, with only one person performing 
the manual lookup of the publications, reliability may be 
questioned. However, the task of identifying whether or not F0
estimation method is explicitly reported, and – in case it is – 
what method this is, is quite straightforward, and does not rely 
on subjective interpretation. Therefore, data noise of this type 
should not be a major concern. 

Regarding the evaluation, there are some aspects that 
deserve to be discussed. First, the high error rates observed for 
YIN on voicing decisions are not surprising, considering that 
YIN is designed only to provide F0 estimates, treating the 
voiced/unvoiced decision as a separate issue [8] [7].  From this 
perspective, the suboptimal evaluation results for YIN may be 
considered unfair. However, for the purpose of this 
investigation, the different estimation methods were intended 
to be used “as is”, with default settings. In other contexts, 
coupling YIN with voicing decisions from another source is a 
way of improving the F0 estimates [12]. One may argue that 
YIN is disprivileged also in the default configuration settings, 
as the pitch range is wider than in the default settings of the 
other two candidates. YIN’s default settings (with 40 Hz as the 

lower pitch threshold) are presumably less tailored to speech 
than the other two candidates. However, the fact that YIN with 
its default configuration actually performs better than when 
pitch range settings are adapted by gender, serves to indicate 
that this potential disfavor does not have a major effect. 

The fact that RAPT is used both in the processing of 
laryngograph data (available in the PTDB-TUG corpus) and as 
a candidate F0 estimation method, one may argue that this 
method is given an advantage in the evaluation. Hence, the 
evaluation results for RAPT may overestimate its actual 
performance.

It should be acknowledged that the findings presented here 
are generalizable only to similar conditions. Hence, it is 
reasonable to assume that the evaluation results generalizes to 
other situations involving clean recordings of single adult 
speakers; however, they may not extend to more challenging 
conditions like speech-in-noise or pathological speech 
samples. Moreover, researchers may want to analyze the 
accuracy of different F0 estimation methods in more detail; in 
such contexts, tools like WinPitch [6] may provide better 
assistance than a general evaluation of the kind presented here. 

As scientific progress is continuous, the current 
investigation will need to be extended with the inclusion of 
new F0 estimation methods when such methods become 
available. By relying on publically available data (the PDTB-
TUG corpus), and standard evaluation outcome measures, the 
experimental setup can easily be replicated by others. 

In the absence of a golden standard for the analysis of F0
in speech science, deciding what method to use is an ad hoc 
choice. The present study has addressed this unsatisfying state 
of affairs by identifying which methods are currently the most 
frequently used, and by evaluating their performance against 
the currently best available ground truth reference. The 
findings should provide comfort to researchers who rely on 
(one of) the most accessible tools available for F0 estimation – 
Praat – that their estimations are among the most accurate (if 
not the most accurate) that can be achieved. Also, the 
evaluation gives a reasonable estimation of the error rates that 
can be expected. Moreover, the finding that adapting pitch 
range settings by gender leads to further improvements in 
accuracy – at least for Praat – should encourage researchers to 
do this routinely. 
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