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Abstract
We present the PhonVoc toolkit, a cascaded deep neural net-
work (DNN) composed of speech analyser and synthesizer that
use a shared phonetic and/or phonological speech representa-
tion. The free toolkit is distributed as open-source software un-
der a BSD 3-Clause License, available at https://github.
com/idiap/phonvoc with the pre-trained US English anal-
ysis and synthesis DNNs, and thus it is ready for immediate
use.

In a broader context, the toolkit implements training and
testing of the analysis by synthesis heuristic model. It is thus
designed for the wider speech community working in acoustic
phonetics, laboratory phonology, and parametric speech cod-
ing. The toolkit interprets the phonetic posterior probabilities as
a sequential scheme, whereas the phonological posterior-class
probabilities are considered as a parallel via K different phono-
logical classes. A case study is presented on a LibriSpeech
database and a LibriVox US English native female speaker. The
phonetic and phonological vocoding yield comparable perfor-
mance, improving speech quality by merging the phonetic and
phonological speech representation.
Index Terms: speech vocoding, deep neural networks

1. Introduction
A speech signal conveys information on different semantic lev-
els. For example, spectral features are used in the feature ex-
traction step of conventional speech processing systems, and
phonetic features are used in acoustic modelling. On the acous-
tic level, speech coders (for example the family of waveform-
approximating coders originated in [1, 2]) operate at higher bit
rates (> 1000 bits-per-second). These coders are used in tele-
phone, mobile and internet communications, so we experience
them in daily life. On the parameter and higher semantic lev-
els, so called parametric speech coders operate at lower bit rates
(< 1000 bits-per-second). To achieve transmission rates of the
order of hundreds of bits-per-second, parametric speech coding
composed of automatic phonetic speech recognition and syn-
thesis has been proposed [3, 4, 5, 6, 7].

We are interested in very low bit rate speech coding. This
necessitates our working at one of the higher semantic levels in
Fig. 1. In some sense the easiest level is the word level as it is
the usual level associated with speech recognition and synthesis.
However, this work is rooted in the practicalities of the Swiss
language scenario, which is not only multilingual but also di-
alectical. Rather than deal directly with the multiple phoneme
sets and lexicons associated with such a scenario, we instead
work at the phone level.

Aside from the practical benefit, the phone level has an ap-
pealing academic justification. The motor theory of Liberman
et al. [8] suggests that speech sounds are stored in the brain as
the motor commands required to reproduce such sounds. The
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Figure 1: Semantic levels of a speech signal.

difference between motor commands, articulatory features and
phonological features is just a (non-linear) mapping. Fig. 1, in
keeping with convention in speech recognition literature, uses
the word ‘phone’ to refer to any of these semantics; however, in
this work we do distinguish them.

In previous work, we constructed a codec using the appeal-
ing symmetry of hidden Markov model (HMM)-based speech
recognition and synthesis. In the last few years, however, neural
networks have been used to great benefit in speech recognition;
such benefit is also being shown in speech synthesis recently.
This trend also leads to an appealing symmetry in the context of
applications requiring both recognition and synthesis. In keep-
ing with this symmetry, and subsuming the non-linear mapping
in the motor / articulator / phonology sense, we choose to work
with (deep) neural networks.

Concretely, we present the PhonVoc toolkit, a cascaded
deep neural network composed of speech analyser and synthe-
sizer that use shared phonetic and/or phonological speech rep-
resentation. We provide theoretical and practical (implemen-
tation) details of the toolkit, followed by a case study investi-
gating speech quality of phonetic and phonological vocoding.
The source code is published with pre-trained English DNNs
(trained on free LibriSpeech and LibriVox data), and thus the
toolkit is ready for immediate use.

The structure of the paper is as follows. Section 2 de-
scribes the parametric vocoding consisting of the parametric
LPC vocoder and phonetic and phonological vocoding. Section
3 provides implementation details. Section 4 describes a case
study using the toolkit, and Section 5 concludes the work and
points to further applications of PhonVoc: low bit rate speech
coding, linguistic parsing, phonological speech synthesis and
comparison of different phonological systems.
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2. Parametric Vocoding
Moving higher on the semantic hierarchy (Fig. 1), a discreti-
sation of the acoustic speech signal (represented by continuous
speech parameters) to language symbols is performed. There
are two widely divergent theories about the relation of speech
to language [9]. The more conventional theory claims that
the basic speech elements are speech sounds (i.e., context de-
pendent/independent phones), whereas less conventional theory
claims that the basic speech elements are articulatory gestures.
Therefore, we implemented the neural network based phonetic
vocoding to investigate the former claim, and the phonological
vocoding to investigate the latter claim.

2.1. Parametric LPC Vocoding

Both phonetic and phonological vocoding are built on the top of
a conventional parametric vocoding. The SSP vocoder1 used by
PhonVoc is a rather standard LPC codec with novel paramet-
ric mixed excitation [10]. For synthesis, harmonic and noise
components are added according the harmonic to noise ratio
(HNR) discerned during pitch estimation at the analysis stage.
The harmonic part is shaped using a second order minimum
phase linear prediction of the negative (maximum phase) part of
the complex cepstrum. This effectively models the glottal for-
mant, leading to an excitation signal with more harmonic power
in the low frequencies and less at higher frequencies. The pitch
estimation is continuous, rendering moot the need for a voicing
detection. The modelled speech parameters are thus:

• pn: static Line Spectral Pairs (LSPs) of 24th order plus
(log) gain,

• log(rn): a Harmonic-To-Noise (HNR) ratio,
• and tn, log(mn): two glottal model parameters – angle
t and magnitude log(m) of a glottal pole.

2.2. Phonetic parameters

Vocoding analysis starts with speech analysis that converts
speech samples into a sequence of acoustic feature observa-
tions X = {x1, . . . ,xn, . . . ,xN} where N denotes the num-
ber of frames in the speech signal. Conventional cepstral co-
efficients can be used in this speech analysis step. Then,
the analysis realised by DNN converts the acoustic feature
observation sequence X into a sequence of vectors Z =
{z1, . . . , zn, . . . , zN}.

Vocoding synthesis is realised as an another DNN that
learns the highly-complex mapping of posteriors zn to the
speech parameters described. More specifically, it consists of
two computational steps. The first step is a DNN forward pass
that generates the speech parameters, and the second one is a
conversion of the speech parameters into the speech samples.
The generated speech parameter vectors – pn, tn, log(rn)
and log(mn) for n-th frame – from the first computational
step are smoothed using dynamic features and pre-computed
(global) variances [11], and formant enhancement [12] is per-
formed to compensate for over-smoothing of the formant fre-
quencies. Parametric vocoding can be done either with synthe-
sised or original pitch features.

The vector of the phonetic parameters zn =
[z1n, . . . , z

p
n, . . . , z

P
n ]> for the n-th frame consists of pos-

terior probabilities zpn = p(cp|xn) of P classes (phonemes).
The .> stands for the transpose operator. The a posteri-
ori estimates p(cp|xn) are 0 ≤ p(cp|xn) ≤ 1,∀p and

1https://github.com/idiap/ssp

∑P
p=1 p(cp|xn) = 1. Because all the phonemes have to

be recognised to access higher semantic levels, the phonetic
posterior probabilities are considered as a sequential scheme.

2.3. Phonological parameters

The vector of phonological parameters zn =
[z1n, . . . , z

k
n, . . . , z

K
n ]> consists of K phonological poste-

rior probabilities of phonological features. The phonological
posteriors are computed by a bank of parallel DNNs, each
estimating the posteriors zkn as probabilities that the k-th
phonological feature occurs (versus does not occur). The a
posteriori estimates p(ck|xn) are also 0 ≤ p(ck|xn) ≤ 1, ∀k,
but max

∑K
k=1 p(ck|xn) = K. Only very few classes are

active during a short term signal,
∑K

k=1 p(ck|xn) � K, that
results in a sparse vector zn.

Using the phonological posterior probabilities can be con-
sidered as a parallel scheme via K different independent chan-
nels. While wrong phonetic posteriors estimation leads to a fail-
ure of the whole segment recognition, wrong phonological pos-
teriors estimation leads to a failure only a sub-phonetic feature
recognition, and this partial error does not inevitably leads to
the whole segment misrecognition.

3. Implementation
Figure 2 shows the design of PhonVoc. It is split into train-
ing and the testing parts. The training consists of (i) an
analysis module, speaker-independent phonetic and phonolog-
ical DNNs, trained on standard ASR speech databases, and
(ii) a synthesis module, a single speaker phonetic and phono-
logical DNN, trained on audio-books available at https:
//librivox.org/ as text-to-speech (TTS) databases. The
trained DNNs are then used in the testing part to vocode any
input speech. We implemented and tested training for:

1. the Wall Street Journal (WSJ0 and WSJ1) US English
continuous speech recognition corpora [13],

2. the French radio broadcast news speech database ES-
TER [14], and

3. the Mandarin speech database from the EMIME
project2,

and the following three different phonological schemes:

1. the Government Phonology (GP) [15, 16],

2. the Sound Pattern of English (SPE) [17], and

3. the extended SPE system (eSPE) [18, 19],

Implementation of PhonVoc depends on the SSP vocoder
and the Kaldi speech recognition toolkit [20] that we used for
DNN training of both analysis and synthesis modules.

3.1. Training

Training of the analysis module consists of two steps. The first
step, alignment, starts with forced aligned with cross-word tri-
phones of an ASR database. The alignment can be obtained as
a by-product of standard ASR system training.

The second step, training of the analysis DNNs, starts with
mapping the phonemes from the alignment to phonological fea-
tures (implemented as GP, SPE and eSPE maps). Training of
the phonetic analysis DNN does not require this mapping. The

2http://www.emime.org/participate/
emime-bilingual-database
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Figure 2: Design and implementation of PhonVoc. The toolkit contains all blue models except of training databases. The trained
DNNs (red boxes) are used in analysis and synthesis of testing audio. The toolkit is thus usable with the pre-trained models.

number of outputs of the phonetic DNN is equal to the num-
ber of phonemes. The phonological analysis DNNs have two
output labels, the particular phonological feature occurs for the
aligned phoneme or not. The training is initialised by Deep
Belief Network pre-training by contrastive divergence with 1
sampling step (CD1) [21]. The DNNs with the softmax output
function are then trained using a mini-batch based stochastic
gradient descent algorithm with the cross-entropy cost function.

Training of the synthesis module starts with preparing in-
put features from the TTS database by performing the paramet-
ric (phonetic and/or phonological) analysis using the analysis
DNNs. The output features – modelled speech parameters –
are extracted by the LPC analysis. Cepstral mean normalisa-
tion of the output features is applied before DNN training. The
DNN is also initialised by pre-training, and is trained with a
linear output and the mean square error cost functions. Both
analysis and synthesis DNNs are trained with the Kaldi train
tool nnet-train-frmshuff. In the case of synthesis DNN
training, the matrices of output features – training targets – are
converted to posterior format with the feat-to-post tool.

3.2. Testing

Testing uses trained analysis and synthesis DNNs to
parametrize and re-synthesize the speech signal. Users can set
in the Config.sh file the type of parametrisation to be done.
Three types are implemented:

1. paramType=0 for phonetic speech parametrisation
only,

2. paramType=1 for phonological speech parametrisa-
tion only, and

3. paramType=2 for joint phonetic and phonological
speech parametrisation.

Optionally, the speech quality of vocoded speech signal can
be evaluated by Mel Cepstral Distortion [22] (implemented in
cdist.sh).

4. A Case Study
As a case study of using PhonVoc, we selected studying the re-
lation of phonetic and phonological speech representations; ask-
ing, are they independent or rather complementary? For exam-
ple, a recent study [23] found that they are rather complemen-
tary, e.g., using them both as a merged phonetic/phonological
speech representation increased the performance of an ASR sys-
tem.

4.1. Databases

We used the LibriSpeech database [24] for training the analysis
part of the vocoder.

For the synthesis part, the recordings from the LibriSpeech
were no usable, as they contain only 25 minutes from each
speaker, in order to avoid major imbalances in per-speaker au-
dio duration. For speech synthesis more recordings per speaker
are required. Hence, we selected a full sized LibriVox audio-
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book “Anna Karenina” of Leo Tolstoy3, around 36 hours long.
Recordings were organised into 238 sections, and we used sec-
tions 1–209 as a training set, 210–230 as a development set and
231–238 as a testing set. The development and testing sets were
3 hours and 1 hour long, respectively.

4.2. Training

The training of the analysis and synthesis parts followed the
training described in Section 3.1. For LibriSpeech database, we
used the training scripts available in Kaldi.

4.2.1. Analysis

Analysis DNNs were trained on the LibriSpeech
train-clean-100 training set, containing 100.6 hours of
recordings, and cross-validation dev-clean set, containing
5.4 hours of recordings. The SPE phonological features were
used for the phonological analysis. The 4 × 1024 DNNs were
initialised by deep belief network pre-training, and trained by
the Kaldi toolkit. Table 1 lists the features and the detection
accuracy in detail. For phonetic DNN training, the accuracy of
context-independent phoneme DNN was 83.7% on the training
data, and 80.9% on the cross-validation data.

Table 1: Classification accuracy (%) of the phonological anal-
ysis at frame level.

Phonolog. Accuracy (%) Phonolog. Accuracy (%)
features train cv features train cv
vocalic 96.3 95.3 round 98.0 97.3
consonantal 96.9 93.4 tense 95.7 94.2
high 96.0 94.5 voice 95.7 94.4
back 95.0 93.3 continuant 96.1 94.9
low 97.4 96.5 nasal 98.6 98.0
anterior 95.6 94.2 strident 98.2 97.4
coronal 94.6 92.8 rising 98.1 97.2

4.2.2. Synthesis

The training and development parts of the Anna Karenina
audio-book sampled at 16 kHz, framed by 25 ms windows with
10 ms frame shift, was used for training of synthesis DNN. The
development set was used for cross-validation. Input features
were prepared by analysis DNNs, and a temporal context of
11 successive frames resulted in an input feature vector of 165
(11 × 15, 14 phonological features plus silence) dimensions.
Output features, LPC speech parameters, were extracted by SSP
toolkit. Cepstral mean normalisation of the output features was
applied before the training. Training of the 4 × 1024 synthesis
DNN was then done as described in Section 3.1.

4.3. Results

Tab. 2 lists the quality evaluation of the different types of vocod-
ings. LPC re-synthesis is the parametric synthesis described in
Sec. 2.1. The three different types are phonetic and/or phono-
logical vocoding done on the top of the LPC re-synthesis. We
can conclude that:

1. The major degradation in vocoding quality comes
from the parametric vocoding, and phonetic/phonology

3https://librivox.org/anna-karenina-by-leo-tolstoy-2

vocoding further degrades speech quality by about 1.4
dB.

2. We can expect that by using higher quality parametric
vocoding, the phone/phonological vocoding would be
improved significantly.

3. There are small but statistically significant (p < 0.001 of
a t-test) differences in phonetic and phonological vocod-
ing. The best quality results from the joint phonetic and
phonological speech representation.

Table 2: Objective quality evaluation of parametric and
phone/phonological vocoding.

Type Name MCD [dB]
– LPC re-synthesis 4.2
0 Phone vocoding 5.6
1 Phonological vocoding 5.8
2 Phone+phonological voc. 5.5

5. Conclusion
In a broader context, techniques in analysis/synthesis vocod-
ing can be applied to analysis-by-synthesis, a heuristic model
emphasises a balance between bottom-up and top-down ap-
proaches in speech and language processing [25]. In our re-
cent work we have already tried to apply these concepts also to
the program of Laboratory Phonology [26]. Therefore, believ-
ing that such analysis/synthesis vocoding could be useful for
a wider speech community, we have prepared an open-source
release of the computational platform.

In this paper, we have presented the PhonVoc toolkit, a
platform that implements training and testing of a cascaded
deep neural network composed of speech analyser and synthe-
sizer that use a shared phonetic and/or phonological speech rep-
resentation. All the components of the PhonVoc toolkit are
freely available, including pre-trained acoustic models for En-
glish language. Some examples of application of the toolkit are
as follows:

• Low bit rate speech coding due to binary nature of
phonological posteriors [7].

• Linguistic parsing due to structured sparsity of phono-
logical posteriors [27].

• Phonological text-to-speech and computational phonol-
ogy speech synthesis [26].

• Studying analysis and synthesis properties of the GP,
SPE and eSPE phonological systems.

As a follow-up work, we recommend to a reader to train
the analysis DNNs on all LibriSpeech data (about 1000 hours)
and measure of their impact on quality of the parametric speech
representation.
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