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Abstract

Single-channel speech enhancement is often formulated in the

Short-Time Fourier Transform (STFT) domain. As an alter-

native, several previous studies have reported advantages of

speech processing using pitch-synchronous analysis and fil-

tering in the modulation transform domain. We propose to

use the Double Spectrum (DS) obtained by combining pitch-

synchronous transform followed by modulation transform. The

linearity and sparseness properties of DS domain are benefi-

cial for single-channel speech enhancement. The effectiveness

of the proposed DS-based speech enhancement is demonstrated

by comparing it with STFT-based and modulation-based bench-

marks. In contrast to the benchmark methods, the proposed

method does not exploit any statistical information nor does it

use temporal smoothing. The proposed method leads to an im-

provement of 0.3 PESQ on average for babble noise.

Index Terms: speech enhancement, double spectrum, modula-

tion transform, pitch-synchronous analysis

1. Introduction

In various speech processing applications including speech cod-

ing, automatic speech recognition and speech synthesis the un-

derlying signal representation determines the accuracy and ef-

ficiency of a certain algorithm. Good representations often re-

quire relatively few coefficients per unit time for an accurate de-

scription of the speech signal, but are complete and hence able

to describe any signal. We argue that the Short-Time Fourier

Transform (STFT), the predominant choice in speech enhance-

ment (see e.g. [1] for an overview), while complete, generally

does not lead to a sparse signal representation for speech.

An alternative to the STFT domain is pitch-synchronous

analysis, with successful results reported both for speech cod-

ing [2,3] and speech enhancement [4]. It was shown that frame

theory can be used to understand this representation [3].

Another alternative is to process speech in the Short-Time

Modulation (STM) domain. Speech enhancement proposals

in modulation domain are spectral subtraction [5], Minimum

Mean Square Error (MMSE) of Short-Time Modulation Magni-

tude (STMM) Spectrum [6], MMSE speech enhancement using

real and imaginary parts of STM [7]. These STM-based meth-

ods, compared to their STFT counterparts, showed less musical

noise or spectral distortion with improved perceived quality.

Inspired by the advantages of modulation and pitch-

synchronous transforms, a key research question is then how to
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exploit these in a speech enhancement framework. In this paper,

therefore, we propose Double Spectrum (DS) signal represen-

tation consisting of pitch-synchronous and modulation trans-

forms. We propose single-channel speech enhancement in DS

domain. To demonstrate the potentials and advantages of the

proposed method, we compare its performance versus the pre-

vious STFT-based and modulation-based benchmarks.

The remainder of the paper is organized as follows; Section

2 places our work in the context of earlier work. In Section 3 we

provide fundamentals of the Double Spectrum (DS) approach.

Section 4 presents the proposed DS speech enhancement, Sec-

tion 5 shows the results and Section 6 provides conclusions.

2. Relation to Previous Works

Separating slowly varying and rapidly varying pitch-cycle

waveform components formed the basis of Waveform Interpo-

lation (WI), which resulted in high quality speech coding [2].

A more general pitch-synchronous modulation representation

was introduced in [3]. This two-stage transform representation

was further refined by Nilsson et al. [8]. The two-stage trans-

form led to a solid performance in speech coding and prosodic

modification. In such speech representation the fundamental

frequency is the key feature resulting in a sparse speech-signal

representation. The block diagram for the two-stage transform

representation, shown in Figure 1, consists of four processing

blocks: Linear Prediction (LP) analysis, constant pitch warp-

ing, pitch-synchronous transform and modulation transform.

The two-stage transform, consisting of pitch-synchronous

and modulation transforms exploits the features of the warped

residual to achieve a highly energy concentrated representa-

tion and will be described in more detail in Section 3.2. The

combination of pitch-synchronous and modulation transform

results in lapped frequency transforms, which approximates the

Karhunen-Loève Transform (KLT) for stationary signal seg-

ments [9]. The KLT maximizes the coding gain, which can be

seen as a particular form of energy concentration [8].

The two-stage transform was extended to speech enhance-

ment [4], where its ability to separate periodic and aperiodic

signals were exploited to improve speech quality. Noise re-

duction was achieved by adaptive weighting of the coefficients

in different modulation bands, which restored harmonicity of

noise corrupted speech. The method was capable of separating

the speech signal into voiced and unvoiced components using a

best-basis selection that optimized the energy concentration of

the transform coefficients.

Throughout this paper, the signal representation obtained

by two-stage transform (pitch-synchronous and modulation

transform) will be referred to as Double Spectrum (DS). Fig-

ure 1 shows the DS framework highlighted in a light gray block

as the basis of the proposed speech enhancement system. Our
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Figure 1: Block diagram for a canonical speech representation

system [8]. The highlighted block shows DS framework using

a two-stage transform and signal modification in DS domain.

goal is to find a framework where the two-stage transform is

directly applied on the noisy signal. In contrast to [4, 8], our

method relies on fixed analysis time blocks (no LP analysis, nor

time warping), which makes the method simpler and faster.

3. Double Spectrum: Fundamentals

First, the pitch is extracted and stored within the coefficients of

the two-stage transform. Since pitch is time-varying and both

transforms do not adapt to this property, we introduce block

processing under the assumption of quasi-stationarity of speech,

explained in the following.

3.1. Time Block Segmentation

Given a fundamental frequency f0, the first step in calculating

DS is pitch-synchronous Time Block Segmentation (TBS). The

TBS step separates the input speech into L time blocks of vari-

able length. The length of each time block is an integer multi-

ple of P0 = fs/f0, where fs is the sampling frequency and P0

is the fundamental period in samples. A time block is further

subdivided into L frames, each of length P0. To avoid discon-

tinuities at the transition of consecutive blocks overlapping is

introduced.

3.2. Two-stage Transform

Each time block is analyzed in terms of a two-stage transform.

The pitch-synchronous transform is implemented as a Modu-

lated Lapped Transform (MLT) [9]. Since pitch varies over

time, this means that we ignore its local variation of pitch during

TBS. The MLT is implemented using a DCT-IV in combination

with square-root Hann window following [8]. This facilitates

a critically sampled uniform filter bank with coefficients that

are localized in time and frequency. The usage of a square-root

window at analysis and synthesis stage as a matched filter sat-

isfies the power complementarity constraint needed for perfect

reconstruction.

Let ν = 0, 1, . . . , 2P0 − 1 be a time index and let x�(ν) be

the �’th pitch-synchronous time frame, i.e. x�(ν) = x(�P0+ν).
The first-stage transform coefficients f(�, k) are then obtained

as

f(�, k) =

2P0−1∑
ν=0

x̃�(ν)

√
2

P0
cos

(
(2k + 1)(2ν − P0 + 1)π

4P0

)
,

(1)

where � = 0, 1, . . . ,L − 1 and k = 0, 1, . . . , P0 − 1 denote

time frame index and frequency band index, respectively, and

x̃�(ν) = x�(ν)w(ν) as the windowed signal segment.

The output of the first transform is a sequence of MLT

coefficients that evolve slowly over time for voiced speech

but rapidly for unvoiced speech. Note that due to the pitch-

synchronous nature of the time frames, the cardinality of the

frequency bands is K = P0.

The modulation transform is a DCT applied to a number of

consecutive frames of the frequency coefficients obtained from

pitch-synchronous transform [10]. To facilitate the implemen-

tation of the modulation transform as a critically sampled filter,

we use DCT-II yielding the coefficients g(q, k) given by

g(q, k) =

Q−1∑
�=0

f(�, k)c(q)

√
2

Q
cos

(
(2k + 1)qπ

2Q

)
, (2)

where q = 0, 1, . . . , Q − 1 is the modulation band index,

c(0) = 1/
√
2 and c(q) = 1 for q �= 0. The definition for Dou-

ble Spectrum is now given by DS(q, k), which is equivalent to

g(q, k) interpreted as a matrix with K frequency bands as rows

and Q modulation bands as columns. Figure 2 schematically vi-

sualizes a speech signal in terms of a sequence of Double Spec-

tra, showing DS(l)(q, k) for a set of time blocks l ∈ [0, L− 1].

k

q

l

l = 0

l = 1

l = 2

l = L − 1

�

�

�

Figure 2: Illustration of a speech signal in Double Spectrum

DS(l)(q, k) shown for time blocks l = 0, 1, . . . , L− 1.

3.3. Some Useful Properties of Double Spectrum

The useful properties of Double Spectrum are: sparsity, linear-

ity, real-valued coefficients, and facilitates comb filtering.

3.3.1. Property I: Sparsity

For a periodic signal segment DS(q, k) yields a high energy

concentration at low modulation bands for frequency chan-

nels related to multiples of f0. In particular, the first modu-

lation band q = 0 represents the periodic component of a sig-

nal, whereas the other modulation bands describe the aperiodic

parts. This property can be explained by assuming a strictly

periodic time signal, e.g., a pure sinusoid. Applying the pitch-

synchronous transform yields MLT coefficients that are identi-

cal for consecutive frames. The subsequent modulation trans-

form is hence applied to a constant data sequence, yielding only

one non-zero coefficient for q = 0, which can be understood as

the DC component of the DCT-II transform. This property may

be exploited for voiced-unvoiced decomposition or for restoring

the harmonicity of noise corrupted speech by finding an appro-

priate balance between low and high modulation bands [4].
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3.3.2. Property II: Linearity

In the time domain, noisy signal y(ν) is a superposition of the

clean signal x(ν) and the noise signal d(ν). In the DS domain

this superposition is preserved, since DS is a linear operator:

y(ν) = x(ν) + d(ν) � �DSy = DSx +DSd, (3)

where DSy , DSx and DSd denote the DS representation of

noisy, clean and noise signal, respectively. Figure 3 shows an

example for DSy , DSx and DSd of the same voiced speech

segment to illustrate linearity.
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Figure 3: Linearity of DS operator given in (3): (Left) clean,

(Middle) noise and (Right) noisy DS.

3.3.3. Property III: Real-Valued Coefficients

The coefficients of DS(q, k) are real-valued and symmetrically

distributed around zero as mean value.

3.3.4. Property IV: Facilitates Comb Filtering

Another property is the pitch-synchronous filter bank which al-

lows comb filtering. Since an analysis frame of length of 2P0

yields K = P0 frequency bands, kf0 = 2 denotes the fre-

quency band corresponding to f0 and we have:

kf0 =
2K

fs
f0. (4)

4. Speech Enhancement in DS Domain

In this Section we present the essential tools for speech en-

hancement in DS domain comprised of pitch estimation, speech

presence probability estimation, and the DS weighting function.

4.1. Pitch Estimation

The segmentation used in DS requires a fundamental frequency

estimate. If the time blocks are segmented erroneously due to

errors in pitch estimation, then the energy of periodic speech

segments is no longer concentrated in the low modulation

bands, but leaks into higher bands. We propose an f0-estimator

that relies on a periodicity measure calculated in the DS domain,

called the Modulation Band Ratio (MBR). The MBR compares

the summed energy of the first modulation band E1 to the total

energy E1:Q

MBR(K) =
E1

E1:Q
=

E1

E1 + E2:Q
, (5)

where E1 =
∑K−1

k=0 |DS(0, k)|2 and E1:Q =∑Q−1
q=0

∑K−1
k=0 |DS(q, k)|2. For periodic frames the MBR

reaches values close to 1, while for non-periodic frames the

mean MBR is 1/Q (close to 0). This allows us to derive an

f0-estimator by searching for an optimal frequency index K∗

that maximizes the MBR:

K∗ = argmax
K

MBR(K). (6)

Using (4), the fundamental frequency estimate is f∗0 = fs
K∗

.

Since using this f0-estimator should serve as a proof of concept

only, we skipped further evaluation steps.

4.2. Speech Presence Probability Estimation

Many common speech enhancement systems use information

about the speech presence probability (SPP). In the design of

our filter method we also take into account SPP to selectively

modify regions of speech presence or absence. The SPP is

computed in the DS domain using the MBR measure, which

discriminates voiced and unvoiced speech even in heavy noise

scenarios. MBR yields values close 1 for voiced and close to 0

for unvoiced, hence is a good measure for SPP.

4.3. Adaptive Weighting based on Energy Smoothing

Our proposed speech enhancement, referred to as Double Spec-

trum Weighting (DSW), is an adaptive weighting scheme cor-

responding to filtering in time domain. The weighting coeffi-

cients G(q, k) are applied to the noisy coefficients DSy(q, k)

and yield the clean speech estimate D̂Sx(q, k):

D̂Sx(q, k) = G(q, k)DSy(q, k), (7)

where G(q, k) is a cascade of two weighting schemes:

We(q, k) to dampen noise-dominant coefficients, and Wq(q, k)
to enhance harmonicity, each described in the following.

4.3.1. We(q, k): Energy-based coefficient weighting

The first weighting, We(q, k) is an energy based coefficient

weighting We(q, k) which compares the energy of each DS-

coefficient with respect to the mean energy of DSy(q, k), re-

sulting in the relative energy Erel(q, k) defined as

Erel(q, k) = KQ
|DS(q, k)|2

E1:Q
. (8)

Since Erel shows a broad dynamic range, we apply the decadic

logarithm as a non-linear mapping function. Additionally, we

constrain the weights to non-negative numbers by adding 1 to

Erel:

We(q, k) = log10(Erel(q, k) + 1). (9)

Note that this coefficient compression is empirically chosen and

motivated by works like [11, 12].

4.3.2. Wq(q, k): Harmonicity Enhancement

As the second weighting, we propose Wq(q, k) to enhance the

harmonicity of noisy speech. To this end, we need a harmonic-

ity indicator. Similar to (5), we consider the Modulation Band

Ratio of the respective frequency band, MBRk given by

MBRk =
|DS(0, k)|2∑Q−1

q=0 |DS(q, k)|2 . (10)

In contrast to the fixed-weighting in [4], we propose an expo-

nentially decaying modulation weighting, motivated by statisti-

cal observations of voiced DS data. Therefore, we use

Wq(q, k) = e−MBRkq, (11)
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Figure 4: Wq(q, k) as a function of q shown for different values

of k1 = 2000 Hz, k2 = 700 Hz, k3 = 500 Hz, k4 = 200 Hz.

where MBRk serves as the decay factor of the exponential

weighting. Figure 4 exemplifies the exponential decaying char-

acteristic in Wq(q, k) for different frequency channels k and

across all modulation bands q.

To have a selective noise suppression, similar to conven-

tional DFT-based speech enhancement [1], we utilize DS-based

SPP as described in 4.2 and apply it as a scaling factor on the

cascade weighting outcome

G(q, k) = SPP ·We(q, k)Wq(q, k). (12)

Finally, we restrict G(q, k) to a lower limit Gmin = 0.178 �

−15 dB [13] which yields

G(q, k) = Gmin if G(q, k) < Gmin. (13)

Following (7) we apply these weighting coefficients on the

noisy DS to obtain D̂Sx. To obtain the enhanced time signal

inverse transforms are applied followed by an overlap-and-add

routine.

5. Results

In this Section, we demonstrate the effectiveness of the pro-

posed DS-based speech enhancement in a blind scenario

and compare its performance versus the STFT-based and

modulation-based benchmarks. To check the robustness of the

method we provide results for f0-known versus blind scenario.

5.1. Experimental Setup

Clean speech utterances were taken from Noizeus speech cor-

pus [14] consisting of 30 phonetically-balanced sentences ut-

tered by three males and three female speakers (average length

of 2.6 seconds). The speech files were downsampled from the

original sampling frequency of 25 kHz to 8 kHz to simulate

telephony speech. To obtain noisy files, the clean speech was

corrupted in babble noise mixed at SNRs of 0, 5 and 10 dB. As

evaluation criteria, we chose Perceptual Evaluation of Speech

Quality (PESQ) measure [15] and the Short-Time Objective In-

telligibility (STOI) measure [16]. We report results in terms of

improvement in ΔPESQ and ΔSTOI as comparison to the out-

come from the noisy (unprocessed) input speech.

To demonstrate the effectiveness of the proposed method,

we include three benchmarks: 1) MMSE-STSA [17], 2) Mod-

SpecSub [5] referring to spectral subtraction in STM, as speech

enhancement benchmark, and 3) we report results of fixed-

weighting following specification in [4] without LP and time-

warping stages. For MMSE-STSA a decision-directed scheme

was used with a Minimum Statistics noise estimator [18] with a

16 ms frame shift, a 32 ms window length and a Hamming win-

dow. For ModSpecSub we used the implementation provided by

SNR-level (dB) 0 5 10

MMSE-STSA [17] 0.18 0.20 0.22

ModSpecSub [5] 0.12 0.12 0.08

Fixed weighting [4] 0.17 0.19 0.17

DSW (blind) 0.27 0.34 0.30

DSW (f0-known) 0.37 0.38 0.35

Table 1: ΔPESQ results averaged over SNRs and utterances

shown for babble noise and different methods.

SNR-level (dB) 0 5 10

MMSE-STSA [17] -0.01 0.00 0.00

ModSpecSub [5] -0.04 -0.04 -0.05

Fixed weighting [4] 0.00 -0.01 -0.02

DSW (blind) -0.03 -0.04 -0.07

DSW (f0-known) 0.03 0.00 -0.04

Table 2: ΔSTOI results averaged over SNRs and utterances

shown for babble noise and different methods.

Paliwal et al. [5].

The parameter setup used for the proposed DS-based

speech enhancement is as follows. The length of the analysis

window is 2P0 with 50% overlap, i.e., P0 of the respective time

block. Assuming stationarity for short time intervals [19] and

taking a typical range for f0 into account, we set the number of

modulation bands to Q = 4.

5.2. Speech Enhancement Results

Tables 1 and 2 report the averaged results of ΔPESQ and

ΔSTOI for 30 speakers. The following observations are made:

• The proposed method (DSW) leads to a 0.3 improvement

in PESQ, outperforming both the MMSE-STSA [17] and

ModSpecSub [5] benchmarks.

• Our pitch estimator performs well. Using an oracle f0
leads to only a minor improvement in performance in

PESQ and STOI. For some audio examples we refer to

https://www2.spsc.tugraz.at/people/pmowlaee/DS.html.

• In terms of intelligibility, a fixed weighting similar to

[4] results in a better STOI compared to the proposed

method at the expense of a lower improvement in the

perceived quality predicted by PESQ.

6. Conclusions

In this paper, we proposed Double Spectrum (DS) speech en-

hancement that relies on pitch-synchronous and modulation

transforms. The linearity of the DS operator results in a

sparse representation of speech that provides a means for the

identification and separation of rapidly-varying (noise and un-

voiced speech) versus slowly varying (voiced speech) compo-

nent. These properties facilitate selective noise reduction. Our

experiments confirm that DS-based speech enhancement out-

performs its STFT and modulation-only counterparts.

The linear property of DS suggests the study of DS subtrac-

tion as a direction for future work on the DS noise estimator.
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