INTERSPEECH 2016
September 8—12, 2016, San Francisco, USA

Acoustic Modeling using Bidirectional Gated Recurrent Convolutional Units

Markus Nussbaum-Thom, Jia Cui, Bhuvana Ramabhadran, Vaibhava Goel

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.

{nussbaum,

Abstract

Convolutional and bidirectional recurrent neural networks have
achieved considerable performance gains as acoustic models in
automatic speech recognition in recent years. Latest architec-
tures unify long short-term memory, gated recurrent unit and
convolutional neural networks by stacking these different neural
network types on each other, and providing short and long-term
features to different depth levels of the network.

For the first time, we propose a unified layer for acoustic
modeling which is simultaneously recurrent and convolutional,
and which operates only on short-term features. Our unified
model introduces a bidirectional gated recurrent unit that uses
convolutional operations for the gating units. We analyze the
performance behavior of the proposed layer, compare and com-
bine it with bidirectional gated recurrent units, deep neural net-
works and frequency-domain convolutional neural networks on
a 50 hour English broadcast news task. The analysis indicates
that the proposed layer in combination with stacked bidirec-
tional gated recurrent units outperforms other architectures.
Index Terms: gated recurrent units, convolutional neural net-
works, automatic speech recognition

1. Introduction

In the past few years, Deep Neural Networks (DNNs) have
achieved overwhelming performance improvements for large
vocabulary continuous speech recognition (LVCSR) tasks [1].
Further improvements have been achieved using Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) [2, 3].

Recently simple RNNs are replaced by the more complex
Long Short-Term Memory (LSTM) RNNs which outperform
DNNs and simple RNNs on a number of tasks [4, 5]. However
in our experiments we decided to use Gated Recurrent Units
(GRUs) instead of LSTMs for multiple reasons.

The GRU recently introduced in [6] has a structure similar
to the LSTM. Interestingly, the studies in [7, 8] indicate that the
GRU matches the LSTM performance. GRUs also consume a
smaller number of parameters compared to LSTMs for the same
hidden layer size due to a smaller gating mechanism and miss-
ing peepholes. In initial experiments, we verified that bidirec-
tional GRUs (BGRUs) match the performance of bidirectional
LSTM:s for automatic speech recognition (ASR) and decided to
use BGRUs in the remaining experiments.

Current architectures incorporationg CNNs and RNNs use
different input features. CNNs [9] typically use a context win-
dow of short-term features surrounding the current frame while
RNNs prefer the current short-term feature only as input. In de-
tail, common short-term features are Vocal Tract Length Nor-
malized (VTLN) Log-Mel features augmented with deltas and
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double deltas. The context window refers to the concatenation
of the 20 feature frames surrounding the current frame. In fact,
the original LSTM work in [4] looked at modeling a sequence
of 20 consecutive short-term features. The more recent work in
[10] unrolls stacked bidirectional LSTMs on a context window
of short-term features and reports that this technique is superior
to using a longer utterance-like contexts to unroll the LSTM.
We could confirm the recipe from [10] and used it in all our ex-
periments. We also observed that using long-term features for
RNNs turned out to be worse than using short-term features.

Latest architectures try to unify CNNs and RNNs by stack-
ing or fusing these layers. The architecture in [3] first feeds
long-term features separately into stacked CNNs, RNNs, and
a DNN and fuses the scores of the different layers for classi-
fication. A different approach is chosen in [11], where first
long-term features are provided to stacked CNNs. Then the out-
put of the stacked CNNs is augmented with short-term features
and fed into stacked LSTMs. Finally the output of the stacked
LSTMs is augmented with short-term features and fed into a
DNN.

Here we choose a different approach to unify CNNs and
RNNs by introducing a novel layer type which is simultane-
ously recurrent and convolutional but uses short-term features
only. In more detail, we introduce a Bidirectional Gated Re-
current Convolutional Unit (BGRCU) which is a BGRU with
gates using convolutional matrix operations instead of fully
connected matrix multiplications. Our proposed modification
makes the CNN maps recurrent in time.

The PyraMiD-LSTM and ConvLSTM models introduced
in [12, 13] define (multidimensional) LSTMs using convolu-
tional gates to perform image segmentation and weather fore-
casting. Our model differs from these approaches in multiple
points. First, we apply our novel model for the first time to
ASR while the PyramMiD-LSTM is used on a medical seg-
mentation and the ConvLSTM is used on a weather forecast-
ing task. Second, the structure of our model is different. We
construct our model from the BGRU structure. That is differ-
ent from the PyraMiD-LSTM and ConvLSTM which construct
their model from the LSTM structure. The gating units of our
BGRCU are composed of convolutions and max-pooling oper-
ations whereas the PyraMiD-LSTM and ConvLSTM use only
convolutional operations. Our BGRCU model is bidirectional
but the PyramidMiD-LSTM and ConvLSTM are unidirectional.

We find that after cross-entropy training our proposed
BGRCU layers in combination with BGRU layers provide a
16-19% relative WER improvement over the DNN and a 14%
relative improvement over a state-of-the-art CNN architecture
on the DEVO4F development and the RT04 test set. Also the
combination of BGRCU with BGRU layers yields a 3% relative
improvement over BGRU standalone architecture.
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The rest of this paper is organized as follows. In Section 2
we describe the CNN, GRU, BGRU layers and introduce our
BGRCU layer which unifies these models. The experimental
setup is described in Section 3 while the result are shown in
Section 4. Section 5 concludes the paper and discusses future
work.

2. Different Layer Types

In this section we review convolutional neural networks, gated
recurrent units and bidirectional gated recurrent units. We show
how these different layer types can be unified into the bidirec-
tional gated recurrent convolutional unit which is convolutional,
bidirectional recurrent.

2.1. Fully Connected Layers

The input to a fully connected layer is a D dimensional observa-
tion z € R”. The hidden vector y is calculated by the equation:

y=ocWz+0b)

The symbol W denotes a matrix, b is a bias and o is a non-linear
activation, such as sigmoid or a rectified linear unit.

2.2. Convolutional Layers

The convolutional neural networks (CNNs) [9] have become
popular in ASR. CNNs have been applied mostly to VTLN Log-
Mel features augmented with deltas and double deltas.

The input to a one dimensional CNN operating in the fre-
quency scale with C' channels and input dimension D is a vector
x € R*P . Free parameters of the CNN consist of a weight
matrix W € RFXC*L with F features maps of length L and a
bias b € R". For the convolutional operation used in the CNN
assume that the input has been zero padded, so that all overlaps
between the feature maps and input can be considered in the
convolution.

Tej—|L/2| — xc’jfLL/zJ’ 1§]7LL/2J§D
oL 0, otherwise

The main operation of the CNN is based on the local convolu-
tion W sz + b € RF*P+L=1 which is calculated by equation:

Wxax+b
C 4L
= DD Wi in/2) + by
c=1 j=1 =1,...,F
i=1,...,.D+L—1

The hidden CNN vector y € RF*P+L~1 i calculated by:
y=oc(Wxx+0D)
The symbol o denotes the non-linearity of the CNN.

2.3. Max-pooling Layers

A max-pooling layer helps to remove variability from the con-
volutional layers, that exist due to speaking styles, channel dis-
tortions, etc. Specifically, each max-pooling unit receives acti-
vations from C' channels, and outputs the maximum of the acti-
vations from these channels.

Maxpooling layers assume the same type of input vector
z € RY*P as the convolutional layers. A one dimensional
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max-pooling operation pool(z) € RE*P~L+1 of length L is
calculated by equation:

pool(z) = (F

Notice, a convolution of length L grows the output filter dimen-
sion from D to D + L — 1 while the max-pooling operation of
length L decreases the filter dimension from D to D — L + 1.
If both operations are executed one after another with the same
filter length the output filter length remains unchanged. This is
an important detail to understand that also the dimension of all
BGRCU gates remain unchanged.

2.4. Gated Recurrent Units

A Gated Recurrent Unit (GRU) was proposed by [6] to make
each recurrent unit to adaptively capture dependencies of dif-
ferent time scales. Similarly to the LSTM, the GRU has gating
units that modulate the flow of information inside the memory,
however, without having a separate memory cells.

An input to a GRU in step ¢ is a D-dimensional vector x; €

RP. The hidden vector sequence h? := hi,..., hr is calcu-
lated by iterating the following equations from¢ =1,...,7"
2t =0(Woxy + Uhe—1 + b2)
+ = o(Wrxe + Uphi—1 + byr)
he = o(Wha + Un(re © he—1) + bn)
he = (1 — z¢)he—1 + zehe

The activation is composed of update gate z:, reset gate T+,
candidate gate hy and output activation hy. Wiey, U(e) and b(e)
denote appropriate sized matrices and biases. The symbol o is
the sigmoid activation, and © is an elementwise multiplication.

2.5. Bidirectional Gated Recurrent Units

Bidirectional GRUs [5] process data in both directions with for-
ward and backward hidden layers. Compared to the unidirec-
tional case the number of free parameters doubles. The result
of both directions is then concatenated in the output.

%
Let h 7 be the forward output of the BGRU by processing

the input sequence zF throught = 1,...,7 and let h T be
the corresponding backward output by processing the input se-
quence in reverse direction through ¢ = 7',...,1. The output

hT of the BGRU is the step—vﬂse concatenation of the forward
and backward output ks := (hy, ;?t)

2.6. Bidirectional Gated Recurrent Convolutional Units

The input to a Gated Recurrent Convolutional Unit (GRCU)
with C' channels and input dimension D is a sequence x] of
vectors £z € RE*P . The hidden vector sequence h} is com-
puted by iterating the following equations from¢ =1,...,7"

2zt = o(W. x x4 + pool(U.. * he—1) + b.)

re = o(Wy x 2+ + pool(Ur * hy—1) + br)

he = o(Wh * x¢ + pool(Up, * (r+ © he—1)) + bn)

hy = (1 — ze)he—1 + zehe

Wiey € RF¥O*E and U,y € RF*F*L are F features maps
of length L. The max-pooling operations also have length L



and b,y € R are the biases. A GRCU uses the same gat-
ing structure as the BGRU but all fully-connected matrix multi-
plications are substituted with a convolutional matrix operation
followed by a max-pooling operation with the same filter length.
Thereby as pointed out in Section 2.2 all output gates will have
the same dimensionality. Combining GRCU and bidirectional
RNNs results in the bidirectional GRCU (BGRCU), which is
defined analogous to the BGRU.

3. Experimental Setup

We perform experiments to learn the behavior of our novel
BGRCU model in combination also with other models, like the
BGRU, DNN and CNN layers. All neural network models are
evaluated as hybrid acoustic model for ASR. The acoustic mod-
els are trained on 50 hours of data from the 1996 and 1997 En-
glish Broadcast News Speech Corpora. Results are reported on
the DEVO4F development and RT04 test sets. Unless otherwise
indicated, we use a 40 dimensional vocal tract length normal-
ized warped VTLN Log-Mel features augmented with delta +
double-delta.

3.1. The Baseline System

The baseline GMM system was trained using the recipe from
[14], which is briefly described below. The raw acoustic
features are 19-dimensional PLP features with speaker-based
mean, variance, and vocal tract length normalization. Temporal
context is included by splicing 9 successive frames of PLP fea-
tures into supervectors, then projecting to 40 dimensions using
linear discriminant analysis (LDA). The feature space is fur-
ther diagonalized using a global semi-tied covariance (STC)
transform. The GMMs are speaker-adaptively trained, with
a feature-space maximum likelihood linear (fMLLR) trans-
form estimated per speaker in training and testing. Following
maximum-likelihood training of the GMMs, featurespace dis-
criminative training (fBMMI) and model-space discriminative
training are done using the boosted maximum mutual informa-
tion (BMMI) criterion. At test time, unsupervised adaptation
using regression tree MLLR is performed. The GMM system
with 5k quinphone states and 150k diagonal covariance Gaus-
sians has been used to generate the alignment for the hybrid
neural network cross entropy training.

3.2. Architectures

In pilot experiments we determined suitable hyperparameter
sizes for the different layer types. The resulting stacked CNN,
BGRCU, BGRU and DNN layer configurations can be seen in
Figure 1. For the configuration of the stacked 1D-CNN and
BGRCU layers we chose the common configuration in two parts
[9]. The first CNN layer has 128 and the second 256 feature
maps with a filter length of 9 and 4. The corresponding max-
pooling layers have a pooling length of 3. The BGRU block
consists of four layers with each 512 forward and backward
hidden nodes. The dropout layers in all experiments have a
dropout-rate of 0.1.

The dimension of the last layer of a CNN and BGRCU is
large. Therefore we add a linear layer to reduce the output di-
mension to 256 before passing it to a DNN or BGRU. In our
experiments we found that this does not affect the error rate.

The stacked two dimensional CNN combined with a DNN
is denoted by (2D-CNN+DNN). The 2D-CNN+DNN has a con-
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figuration similar to [9] only here we use more output targets.

3.3. Neural Network Training

For neural network training we use the Theano wrapper
Keras [15, 16] connected to the decoding and feature extrac-
tion pipeline of the IBM speech recognition system [14]. In
the training procedure, the truncated back-propagation through
time (BPTT) learning algorithm is used. Before the next epoch
the utterances are sorted by length and uniformly sampled. Each
utterance is split into subsequences of 21 frames with an over-
lap of 10 frames. For each epoch the starting point of the ut-
terance sampling is randomly shifted by an offset of 0 to 9. In
experiments we found this procedure to give an additional per-
formance boost to the BRNNs. The recurrent models are trained
on minibatches of size 250, which are shuffled randomly after
each epoch. Each position in the minibatch is composed of a
subsequence of 21 frames coming from a different utterance.
The bidirectional neural networks are unrolled on the sequence
of 21 frames with all alignment targets presented in training.
In decoding on the other hand similar to [10] the bidirectional
neural network is unrolled on the context window of 20 frames
surrounding the current frame. The last layer of a stack of bidi-
rectional layers in decoding only returns the center frame output
to the remaining non-recurrent network. Non-recurrent neural
networks are trained on a minibatch of 250 composed of the
features corresponding to the model, but otherwise follow the
same recipe.

All architectures are cross-entropy trained on the GMM
alignment using the gradient descent optimizer ADAM [17] with
a minibatch size of 250 and learning rate schedule as follows.
After one pass through the data, the cross entropy loss is mea-
sured on a held-out set. If the cross entropy loss does not im-
prove sufficiently the learning rate is reduced by a factor of 0.85
and the clock of ADAM is reinitialized for the next epoch. Train-
ing stops after 50 epochs. The choice of the overall best model
is determined in recognition steps of 5 epochs on the develop-
ment set and in after. After determining the best model on the
development set this model is evaluated on the test set.

4. Experimental Results

In this section, we explore the proposed BGRCU from Section 2
in combination with other layer types described in Figure 1.
We also examine what happens when the BGRCU is exchanged
with a non-recurrent one dimensional CNN. All neural network
models are evaluated as hybrid acoustic models in the HMM
system. Results are reported on both the DEVO4F development
and the RTO4 test set. In the following the notation A+B means
that architecutre B is stacked on top of architecture A with re-
spect to the architectures defined in Figure 1.

Table 1 shows the performance of the different neural net-
work architectures which we compare to DNN, 1D-CNN, 2D-
CNN+DNN and BGRU HMM systems. The table indicates that
the hybrid 2D-CNN+DNN system offers a 2-5% relative im-
provement over the DNN. However, the BGRU is far better than
the all DNN and CNN based architectures. The BGRU offers
between a 14-16% relative improvement over the DNN, and a
11-12% relative improvement over the 2D-CNN+DNN.

The 1D-CNN performs worse than all other combinations
resulting in WERs beyond 20%.



1D-CNN BGRCU BGRU

DNN A

| Input | Input | | Input

Input | A | ]

Y Y

[ 1D-conv(128,3,9) | [ BGRCU(128,3,9) | | BGRU(512)

+ : !

Sigmoid(1024) |  [Linear+Softmax(5000)] |

Y Y

| Dropout(0.1) | | Dropout(0.1) | ‘ Dropout(0.1)

Sigmoid(1024) |

Linear+Softmax(5000)

| 1D-Pool(3) | | 1D-Pool(3) | ] BGRU(512)

Sigmoid(1024) |

Y

[1D-Conv(256, 128, 4)] [ BGRCU(256,128,4) | | Dropout(0.1)

Sigmoid(1024) |

Y

[ Dropout(0.1) | [ Dropout(0.1) | | BGRU(512)

Sigmoid(1024) |

Y Y

| Reshape | | Reshape | [ Dropout(0.1)

Sigmoid(1024) |

Y Y

| Linear(256) | Linear(256) | | BGRU(512)

BGRU(512) |

Y

Y

\ Dropout(0.1)

Dropout(0.1) \

\ Linear(256)

Linear(256) \

\

\

Figure 1: Architecture of the stacked CNN, BGRCU, BGRU and DNN layers used in the experiments. The corresponding hyperpa-
rameters of the layers in this figure have the following meaning: 1D-CONV(#feature maps, #input channels, filter length) is a one
dimensional CNN, BGRCU(#feature maps, #input channels, filter length) is a one dimensional BGRCU, 1D-POOL(pooling length) one
dimensional max-pooling layer, BGRU(#hidden nodes), DROPOUT(dropout rate).

Table 1: The performance of layer combinations measured as a
function of the WER[%] on the BN5OH dataset. The parameter
size of the corresponding models is also given in Millions (M).

WER[%]
model model size | DEVO4F | RT04
DNN 10M 16.2 15.8
2D-CNN+DNN 66 M 15.8 15.0
BGRU 24M 14.2 13.6
1D-CNN 4M 26.8 25.4
1D-CNN+DNN 14M 24.3 22.1
1D-CNN+BGRU 32M 14.1 13.6
BGRCU 11M 154 14.7
BGRCU+DNN 14M 15.6 14.5
BGRCU+BGRU 37TM 13.8 13.2

Also the 1D-CNN+DNN combination does not significantly
improve the performance over the 1D-CNN. Surprisingly, the
IDCNN+BGRU combination achieves a big improvement over
the 1D-CNN standalone model. In this combination, it per-
forms slightly better than the BGRU architecture on the de-
velopment set, but achieves the same performance on the test
set. It seeems, BGRUs are able to connect the one dimen-
sional frequency CNNs with the temporal context which 2D-
CNN+DNNSs have by definition.

Also BGRCUs have this temporal context by definition
due to their recurrent bidirectional nature. In our experi-
ments, BGRCUs provide a 4-7% relative improvement over
DNNs and about 2% relative improvement over 2D-CNNs. The
BGRCU+DNN combination performs similar compared to the
BGRCU standalone architecture. The biggest improvement is
achieved by the BGRCU+BGRU combination which provides
a 16-19% relative improvement over the DNN, about 14% rel-
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ative improvement over the 2D-CNN+DNNs, and also outper-
forms the BGRU and 1D-CNN+BGRU architectures by a 3%
relative WER improvement.

5. Conclusions

In this paper, we introduced the Bidirectional Gated Recurrent
Convolutional Unit (BGRCU) which unifies convolutional neu-
ral networks and bidirectional gated recurrent units into one
model. We showed that our novel layer outperforms the cor-
responding one and two dimensional convolutional neural net-
works. In addition when stacking bidirectional gated recur-
rent units on top of the BCGRU this combination outperforms
all other architectures. On a 50 hour broadcast news task this
combination shows a 16-19% relative WER improvement over
DNN:ss, a 14% relative WER improvement over two dimensional
CNNs and a 3% relative WER improvement over bidirectional
gated recurrent units. For future research we will investigate se-
quence training of our proposed model and use two dimensional
convolutions.
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