
SNR-Aware Convolutional Neural Network Modeling for Speech Enhancement 

Szu-Wei Fu 12, Yu Tsao1, Xugang Lu3 

1 Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan 
2 Department of Computer Science and Information Engineering, National Taiwan University, 

Taipei, Taiwan 

3National Institute of Information and Communications Technology, Kyoto, Japan 
 

{jasonfu,yu.tsao}@citi.sinica.edu.tw; xugang.lu@nict.go.jp 
 

Abstract 
This paper proposes a signal-to-noise-ratio (SNR) aware con-
volutional neural network (CNN) model for speech enhance-
ment (SE). Because the CNN model can deal with local tem-
poral-spectral structures of speech signals, it can effectively 
disentangle the speech and noise signals given the noisy 
speech signals. In order to enhance the generalization capabil-
ity and accuracy, we propose two SNR-aware algorithms for 
CNN modeling. The first algorithm employs a multi-task 
learning (MTL) framework, in which restoring clean speech 
and estimating SNR level are formulated as the main and the 
secondary tasks, respectively, given the noisy speech input. 
The second algorithm is an SNR adaptive denoising, in which 
the SNR level is explicitly predicted in the first step, and then 
an SNR-dependent CNN model is selected for denoising. Ex-
periments were carried out to test the two SNR-aware algo-
rithms for CNN modeling. Results demonstrate that CNN with 
the two proposed SNR-aware algorithms outperform the deep 
neural network counterpart in terms of standardized objective 
evaluations when using the same number of layers and nodes. 
Moreover, the SNR-aware algorithms can improve the de-
noising performance with unseen SNR levels, suggesting their 
promising generalization capability for real-world applications.  
Index Terms: speech enhancement, convolutional neural net-
work, denoising autoencoder, multi-task learning 

1. Introduction 
The goal of speech enhancement (SE) is to improve the intel-
ligibility and quality of a noisy speech signal. In the past, vari-
ous SE approaches have been developed. Successful examples 
include spectral subtraction [1], minimum-mean square error 
(MMSE) based spectral amplitude estimator [2], Wiener filter-
ing [3], Karhunen-Loéve transformation (KLT) [4], and non-
negative matrix factorization (NMF) [5]. Although these ap-
proaches can effectively remove noise components from noisy 
speech signals, there is still room for further improvement of 
their performance, especially in very challenging acoustic 
conditions (e.g., low SNR and non-stationary noises [6]). 

Recently, deep learning based SE approaches have been 
proposed and extensively investigated [7-10]. For this type of 
approach, a deep-structure model is used to predict the clean 
log-power spectra (LPS) features from noisy LPS features. In 
[7, 11], a deep neural network (DNN)-based SE approach was 
demonstrated to be better than traditional SE models. Moreo-
ver in terms of computational load, the DNN–based SE meth-

ods are more efficient when compared with the NMF-based 
SE algorithm, where an iterative optimization is required. Alt-
hough DNN-based SE algorithms have achieved considerable 
successes, two significant issues remain unsolved and require 
further improvement: (1) characterization of the local tem-
poral-spectral structures of speech signals, and (2) explicitly 
considering SNR information to achieve adaptive denoising. 

For the first issue, because the DNN model processes 
speech signals in a fully-connected manner, the local tem-
poral-spectral structures of speech signals may not be effec-
tively characterized. Contrarily, the architecture of a convolu-
tional neural network (CNN) is designed to take advantage of 
the 2D-structured input by using local connections to focus on 
local patterns. Compared to DNN, CNN may be more suitable 
for SE tasks since it can pay more attention to neighboring 
regions around each time-frequency (T-F) unit. Because CNN 
can model spatial and temporal correlations and reduce trans-
lational variance in signals [12], it has proved notably success-
ful in the image recognition and computer vision fields [13]. 
Recently, CNN has also been applied to speech recognition 
[12, 14] where again it achieved better recognition accuracy 
than DNN. Meanwhile, Zhao et al.[15] proposed a music re-
moval model based on CNN for speech recognition and ob-
tained better recognition results compared with DNN. Hui et al. 
also employed CNN to separate speech and noise by estimat-
ing the ideal ratio mask of the time-frequency units [16]. 
Based on the successes of the abovementioned CNN for im-
proving performance, this study investigates the capability of 
CNN for the SE task.  

For the second issue, it has been shown that SE perfor-
mance can be degraded by the mismatch of training and test 
conditions, particularly noise types and SNRs [11]. To deal 
with this issue, Xia et al. [17] employed GMM to classify the 
noise type before feeding the noisy speech signal into the 
DNN model. However, it may be difficult to generalize this 
approach to an unseen noise type since it is a classification 
problem. Meanwhile a noise-aware training criterion has been 
proposed to incorporate noise information in the input feature, 
thereby making DNN aware of the type of noise [18]. Aside 
from dealing with the noise type, this paper proposes two 
SNR-aware algorithms to enable the deep denoising model to 
effectively utilize the SNR information to achieve better SE 
performance. The first algorithm applies a multi-task learning 
(MTL) framework to estimate clean speech signals (the main 
task) together with the SNR level (the secondary task) for a 
noisy input speech. By the MTL, the trained CNN model can 
be implicitly aware of the SNR levels. The second algorithm is 
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an SNR adaptive denoising (SNR_AD), which consists of of-
fline and online stages. In the offline stage, a set of SNR-
specific denoising models is prepared, where each model is 
trained by the noisy/clean pair using noisy speech within a cer-
tain SNR range. Unlike predicting the noise types, which is a 
classification problem [17], estimating the SNR level is a re-
gression problem. In other words, the estimated level has a 
numerical relationship, and thus, can be generalized for an un-
seen SNR level. In the online stage, SNR_AD first predicts the 
SNR level of the noisy input, and then an SNR-dependent 
CNN model is selected for denoising.  

 

2. CNN model for denoising 

2.1. Regression model for denoising 
The SE framework used in this paper resembles the one used 
in [7]. In the training stage, a set of noisy/clean speech pairs is 
prepared. The noisy and clean speech signals are first convert-
ed into the frequency domain, and their LPS features are then 
placed as the input and output, respectively, to train a regres-
sion model. In the enhancement stage, the noisy LPS features 
are fed into the trained model to produce the enhanced LPS 
features. We can synthesize the enhanced speech signal in the 
time domain together with the phase information, which is 
borrowed from the original noisy speech. In [7], a DNN model 
is used as the regression model. CNN can deal with the local 
temporal-frequency structure of signal, which may be much 
more efficient in disentangling noise and speech features than 
the DNN model. Therefore, in this study, we chose to investi-
gate a CNN model for SE. 

2.2. The CNN SE framework 
A CNN model may consist of one or more pairs of convolu-
tion and max-pooling layers. A convolution layer applies a set 
of filters to extract features, and a max-pooling layer generates 
a lower resolution version by taking the maximum filter acti-
vation. Max-pooling layers make the output of convolution 
networks translationally invariant. This is a desired property in 
speech (image) recognition since it can increase the robustness 
to speaker (object) variations and improve accuracy [13, 14]. 
However, pooling may also cause the network to lose infor-
mation about the detailed structure and textures [19], and thus 
may not be suitable for SE applications. In Section 4, we will 
conduct a series of experiments to confirm this conjecture.  

3. SNR-aware algorithms 

3.1. Multi-task learning 
One possible way to exploit the SNR information is to apply 
multi-task learning (MTL), with the intention that the learned 
model can be implicitly aware of the level of noise it fac-
es.  MTL learns a target problem together with other related 
problems at the same time, using a shared representation. This 
often leads to a better model for the main task, because it al-
lows the model to use the commonality among the tasks [20].  
Xu et al. [21] proposed a DNN structure by estimating clean 
LPS and MFCC features together to achieve better enhance-
ment performance. To embed the ability of SNR estimation 
into the learned model, DNN/CNN should jointly estimate the 
primary LPS features together with a secondary task, namely 
the SNR level of the noisy input.  

The idea is illustrated in Fig.1. In this figure, we can see, in 
denosing, instead of applying conventional mean square error 
(MSE) between clean and estimated LPS as the cost function, 
the new objective to be minimized is augmented as follows: 
 

�(Θ) = 1� � �‖�	 − �
	‖��
�

	�
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�

	�
 � (1) 

where �	  and �
	  denote the clean and estimated LPS feature 
vectors, respectively, at sample index i, with N representing 
the total training data size. Variables �	 and �̂	 denote the true 
and estimated SNR levels of the noisy input frame at index i, 
respectively, while λ is the weighting factor of the two targets.. 

3.2. SNR adaptive denoising  
Another relatively intuitive method to exploit the SNR infor-
mation is to enhance the noisy speech by using different de-
noising models according to the noise strength. The overall 
framework of the proposed SNR_AD scheme is illustrated in 
Fig. 2. To achieve this goal, an SNR estimator has to be ap-
plied beforehand. In this study, the estimator is another 
DNN/CNN model that is trained with noisy LPS features to 
predict its true SNR value. Then a decision is made by com-
paring the estimated level to some predefined thresholds to 
decide which denoising model is most suitable for the current 
input frame. The decision process is defined as follows: 
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Figure 1: Structure of the proposed CNN with MTL for SE. 
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Figure 2:  Structure of CNN with SNR_AD for SE. 
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where �	 is the estimated SNR level, K is the total number of 
denoising models, m is the decision output to apply the m-th 
model, and �� is the k-th threshold which is dependent on K 
and the SNR level used in the training set. Thresholds are set 
to be in descending order, i.e., �� > �� > ⋯ > ���� . Note 
that the SNR estimator itself is a regression model, and the 
final categorical result will be obtained only after the decision 
process in (2). 

Intuitively, each denoising model should only be trained 
on the noisy speech within a certain range of SNR. Hence, a 
better performance at that specific noise strength can be ex-
pected. However, to achieve better generalization and to fully 
utilize the training data, the weights in each denoising model 
are initialized to those in the universal model that was trained 
using all the data. The weights are then fine-tuned based on 
the training data within the specific SNR range.   

4. Experiments  

4.1. Experimental setups 
In our experiments, the Mandarin version of Hearing in Noise 
Test (MHINT) corpus [22] was used to prepare the training 
and test sets. The MHINT corpus includes 240 utterances, and 
we collected another 240 utterances from the same speaker to 
form the complete task in this study. Among these 480 utter-
ances, 250 utterances were excerpted and corrupted with five 
noise types (Babble, Car, Jackhammer, Pink, and Street), at 
five SNR levels (-10dB, -5dB, 0dB, 5dB, and 10dB), to build a 
3.5 hours training set. Another 50 utterances were mixed to 
form the test set. In this study, we consider a more realistic 
condition, where both noise types and SNR levels of the train-
ing and test sets were mismatched. Thus we intentionally 
adopted two other noise signals (White Gaussian noise (WGN), 
a stationary noise) and (Engine, a non-stationary noise), with 
another five SNR levels: -12dB, -6dB, 0dB, 6dB, 12dB (dif-
ferent from the training conditions) to form the test set. 

In this work, 257 dimensional LPS were extracted from 
the speech waveforms as the acoustic features; in the mean-
while, to model the context information, multiple frame ex-
pansion was applied to extend the input to 5 frames [7]. Mean 
and variance normalization was applied to the input feature 
vectors to make training process more stable. To evaluate an 
SE algorithm, two aspects must be considered: noise reduction 
and speech distortion Therefore, segmental SNR (SSNR in dB) 
and mean square error (MSE) between the enhanced LPS and 
clean LPS were used as objective evaluations to measure noise 
reduction and speech distortion, respectively, of the enhanced 
speech. For a fair comparison, both CNN (3 convolutional lay-
ers plus 2 fully connected layers) and DNN were fixed to five 
hidden layers. Each corresponding layer has the same number 
of nodes. Because the CNN model has a weight sharing and 
local connectivity structure, the trainable weights in CNN are 
less than that of DNN. Therefore except the dropout rate in the 
first three layers, all the other hyperparameters were set to be 
the same in the DNN and CNN models.  

For the experiments of MTL, the weighting factor, λ in Eq. 
(1), was set to 0.006 empirically. For the experiments of 
SNR_AD, the number of denoising models, K in Eq. (2), was 
set to 3, and the two thresholds were set as �� = 5, �� = −5, 
according to the SNR levels in the training set.  

4.2. Experimental results  

4.2.1. The effect of max-pooling on CNN-based SE  

In this section, we investigate the SE performance of CNN 
denoising with and without max-pooling. The results of En-
gine and WGN noises have very similar trends, and thus only 
the Engine noise results are presented in this section. Table 1 
demonstrates the average MSE and SSNR scores of CNN with 
and without max-pooling under the Engine noise over five 
SNR levels. From the table, we observe that CNN without 
max-pooling outperforms CNN with max-pooling in terms of 
both MSE and SSNR. Additionally, Fig. 3 presents the differ-
ences of clean spectrogram and CNN enhanced spectrogram (a) 
with max-pooling, and (b) without max-pooling. For a clearer 
comparison, both differences are processed by a tanh function 
to normalize the output within the range of -1 to +1. In the re-
gions within the black rectangles, we note that blue (negative 
values) and red (positive values) parts appear alternately, im-
plying that the denoising model perform SE in a relatively in-
accurate T-F positions caused by the max-pooling process.  
 
Table 1: Average MSE and SSNR scores for the Engine noise 
over five SNR levels by CNN with and without max-pooling. 

Method MSE SSNR 
With max-pooling 0.828 1.423 

Without max-pooling 0.816 2.090 
 

 
Figure 3: Normalized differences of the clean spectrogram 
and CNN enhanced spectrograms: (a) with max-pooling; (b) 
without max-pooling under Engine noise at 6 dB SNR. 

4.2.2. SNR estimation   

For the SNR-aware algorithms, an accurate estimation of the 
SNR level given the test utterance is a critical requirement. 
Therefore in this section, we intend to investigate the SNR 
estimation accuracies of DNN and CNN. In the training 
phase, the target output of both models was a true SNR value 
given each noisy speech utterance input. It should be noted 
that the noise types of the training and test conditions were 
different. Figure 4 shows the mean and standard deviation 
(STD) of the predicted SNRs at target SNRs on the test set. 
From Fig 4, we observe two results: (1) the accuracies of 
DNN and CNN on SNR prediction are similar; (2) although 
the absolute SNR prediction accuracies are not perfect, we 
observe notable differences of predicted SNR results across 
five distinct SNR inputs. This set of results suggests that the 
DNN/CNN model can be suitably used to perform SNR esti-
mation to implement the SNR-aware algorithms. 
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4.2.3. MTL and SNR_AD for CNN denoising 

Figure 5 presents the spectrograms of (a) a clean utterance ex-
cerpted from MHINT, (b) the same utterance corrupted by the 
Engine noise at SNR=6dB, (c) DNN enhanced utterance, and 
(d) CNN enhanced utterance. Form the figure, we first note 
that both DNN and CNN can effectively remove noise compo-
nents from the noisy utterance. Moreover, (d) CNN can keep 
more speech details around the formant parts (indicated by the 
black dash rectangles) when compared with (c) DNN. In addi-
tion to a qualitative (visual) comparison using Fig. 5, Table 2 
shows the quantitative results of the average MSE and SSNR 
scores on the test set, among: DNN, CNN, CNN with MTL 
(denoted as CNN+MTL), CNN with SNR_AD (denoted as 
CNN+ SNR_AD). From the table, CNN provides lower MSE 
and higher SSNR scores compared to DNN in most SNR lev-
els, with a 0.5 dB SSNR improvement on average. The result 
implies that CNN can more effectively model the local T-F 
characteristics. We also note that CNN+MTL outperforms 
CNN consistently among all of the SNR levels, confirming the 
effectiveness of incorporating the SNR information into the 
objective function for denoising. This may be owing to the 
second term (target) in (1) serve as a regularization term [23] 
to cause the CNN model to conservatively remove noise com-
ponents while avoiding speech distortion. 

From Table 2, we also note that CNN+SNR_AD outper-
forms CNN in most cases. This result is consistent with 
CNN+MTL: combining SNR information can effectively im-
prove the performance of CNN denoising. The advantage of 
SNR_AD is especially noted at high SNR input (at 12 dB) ,  

 

which implies that using a universal model for denoising 
would cause speech distortion. From Fig. 4, we note that the 
SNR estimation is not perfected in our current system. To fur-
ther investigate the upper-bound performance of SNR_AD, we 
carried out an oracle experiment (CNN+SNR_AD(O) in Table 
2, which assumes that the true SNR level was given (and thus 
the accurate SNR-dependent denoising model was selected) to 
perform SE. From Table 2, we note that CNN+SNR_AD(O) 
outperforms CNN+SNR_AD, showing that for the tasks where 
the accurate SNR level is accessible, the performance of 
CNN+SNR_AD can be further enhanced. From the results in 
Table 2, we conclude that both proposed SNR-aware algo-
rithms can effectively improve the CNN denoising capability 
while SNR_AD requires more computational cost than MTL.  

5. Conclusions 
The contribution of this paper is two-fold. First, we confirm 
that CNN can effectively extract the local T-F features of 
speech signals and thus achieve better SE performance than 
DNN. Meanwhile, we find that max-pooling may not be nec-
essary for SE tasks because of its reduced capability of charac-
terizing detailed speech patterns. Second, we proposed two 
SNR-aware algorithms and proved that both algorithms can 
enable CNN model with improved denoising performance. In 
the future, we will explore other possible cost functions with 
advanced neural network architectures for the SE task. 

Table 2. Average MSE and SSNR scores on the test set consists of five different SNRs with the two unseen noise environments, 
among: DNN baseline, proposed CNN, CNN with multi-task learning (CNN+MTL), CNN with SNR adaptive denoising 
(CNN+SNR_AD), and oracle SNR adaptive denoising with given true SNR level (CNN+SNR_AD(O)). 

 DNN (baseline) CNN CNN+MTL CNN+SNR_AD CNN+SNR_AD(O) 
SNR MSE SSNR MSE SSNR MSE SSNR MSE SSNR MSE SSNR 
12 0.713 5.103 0.725 5.280 0.681 5.509 0.677 5.639 0.669 5.846 
6 0.828 4.083 0.807 4.367 0.785 4.550 0.789 4.536 0.796 4.779 
0 0.999 2.517 0.936 2.964 0.930 3.053 0.939 3.019 0.961 2.968 
-6 1.371 0.331 1.257 1.047 1.268 1.070 1.282 0.980 1.271 1.054 

-12 1.716 -2.166 1.586 -1.392 1.593 -1.344 1.591 -1.310 1.599 -1.330 
Ave 1.125 1.973 1.062 2.453 1.051 2.567 1.055 2.573 1.059 2.663 

 

 
Figure 4:  Mean and standard deviation (STD) of the SNR 
estimations carried out by DNN and CNN. 

 
(a) Clean (b) Noisy 

 
(c) DNN (d) CNN 

 

Figure 5: Four spectrograms of a MHINT utterance corrupted 
by Engine noise at SNR=6dB: (a) clean speech (b) noisy 
speech (c) enhanced by DNN (d) enhanced by CNN. 
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