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Abstract

Using auxiliary input features has been seen as one of the
most effective ways to adapt deep neural network (DNN)-based
acoustic models to speaker or environment. However, this ap-
proach has several limitations. It only performs compensation
of the bias term of the hidden layer and therefore does not fully
exploit the network capabilities. Moreover, it may not be well
suited for certain types of architectures such as convolutional
neural networks (CNNs) because the auxiliary features have dif-
ferent time-frequency structures from speech features. This pa-
per resolves these problems by extending the recently proposed
context adaptive DNN (CA-DNN) framework to CNN architec-
tures. A CA-DNN is a DNN with one or several layers fac-
torized in sub-layers associated with an acoustic context class
representing speaker or environment. The output of the factor-
ized layer is obtained as the weighted sum of the contributions
of each sub-layer, weighted by acoustic context weights that are
derived from auxiliary features such as i-vectors. Importantly, a
CA-DNN can compensate both bias and weight matrices. In this
paper, we investigate the use of CA-DNN for deep CNN-based
architectures. We demonstrate consistent performance gains for
utterance level rapid adaptation on the AURORAA4 task over a
strong network-in-network based deep CNN architecture.
Index Terms: Acoustic model adaptation, context adaptive net-
work, auxiliary features, deep convolutional neural networks

1. Introduction

The emergence of deep neural network (DNN)-based acous-
tic models has generated an increased interest for neural net-
work adaptation techniques to speakers or environments. Adap-
tation techniques include feature transformations [1-4], direct
adaptation or transformation of all or part of the DNN param-
eters [5—12], and exploiting auxiliary features [13-20]. In par-
ticular, bias compensation can be easily implemented by aug-
menting the input of a network or a hidden layer with auxiliary
features such as noise estimates or i-vectors [13, 14]. Exploit-
ing auxiliary features is especially appealing because it does not
require labels to achieve adaptation and it enables rapid adapta-
tion since the auxiliary features can be computed using a small
amount of speech data.

Most neural network adaptation techniques have been in-
vestigated for fully connected deep neural networks. However,
recent ASR systems rely more and more on advanced architec-
tures such as deep convolutional neural networks (CNNs) [21,
22], deep long short time memory (LSTM) networks [23] etc.
In particular, deep CNN with network-in-network (NiN)-based
acoustic models have been shown to be powerful for noise ro-
bust ASR tasks [24,25]. In such architectures, several convo-
lutional layers are stacked below fully connected layers. There
have been some investigations for exploiting auxiliary features
for CNN-based networks [17,20,21]. However, the auxiliary
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features cannot simply be added to the input of the convolu-
tional layers, because auxiliary features such as i-vectors usu-
ally exhibit a different time-frequency structure than speech fea-
tures. Therefore, auxiliary features have been used to compute
a bias term directly added to the input features [17] or as aux-
iliary features to the input of the fully connected layers that are
above the convolutional layers in a CNN architecture [20,21].

In this paper, we investigate the use of context adaptive deep
neural networks (CA-DNN) for deep CNN-based acoustic mod-
els such as NiN. A CA-DNN is a neural network architecture
we recently proposed [26,27], which has one or several lay-
ers factorized in sub-layers. Each sub-layer is associated with
an acoustic context class or cluster. The output of the factor-
ized layer is obtained as the weighted sum of the contribution
of each sub-layer, weighted by acoustic context class weights
that are derived from auxiliary features. CA-DNN provides
an alternative to inputting i-vectors to the input or hidden lay-
ers of the network. It has two potential advantages, (1) it can
adapt both the bias terms and the weight matrices of the net-
work, (2) it can be naturally applied to convolutional layers.
Therefore it can be used to adapt the lower layers of the net-
work that may carry more speaker related information [10, 28].
We demonstrate experimentally the potential of context adap-
tive CNN (CA-CNN) on the AURORA4 noisy speech recog-
nition task for rapid utterance based speaker adaptation. The
proposed CA-CNN achieves up to 6 % relative word error rate
(WER) reduction over a strong NiN-based deep CNN baseline.
To the best of our knowledge, this constitutes the first attempt
to use context/cluster adaptive DNN to CNN architectures. In
addition, we provide visualization of the context class weights
that shows that the proposed CA-CNN automatically learns to
differentiate between male and female speakers.

In the remainder of the paper, we first review the NiN-based
deep CNN architecture in Section 2. We then elaborate on its
extension to CA-CNN in Section 3. In Section 4, we discuss the
relations of our method with previous works. We then present
experimental results in Section 5. Finally, Section 6 concludes
the paper and discusses potential future research directions.

2. Convolutional neural network and
Network-in-Network

As an example of deep CNN acoustic model, we base our dis-
cussion on the NiN architecture [29] shown in Figure 1-(a). The
NiN architecture discussed in this paper is similar to the one
proposed in [24,25], which has been shown to achieve high
performance in noisy conditions. In the following subsections
we briefly review the principle of a convolutional layer and the
NiN architecture.

http://dx.doi.org/10.21437/Interspeech.2016-203



Full 2048
Full 2048

Full 2048

Pooling Pooling
Conv. (1x1), 180, 180
Conv. (1x5), 180, 180

Pooling

Pooling

Conv. (1x1), 180, 180

Conv. (11x5), 3, 180

Speech Speech Auxiliary
feature feature features
(a) NiN (b) CA-CNN (i=2)

Figure 1: Schematic diagram of (a) a NiN-based deep CNN
network, (b) the corresponding CA-CNN with the second layer
(¢ = 2) replaced with a context adaptive layer.

2.1. Convolutional layer

Figure 2-(a) is a schematic diagram of the " convolutional
layer of a network. The input of the convolutional layer con-
sists of time-frequency feature maps, i.e. for the first layer, it
usually consists of three maps associated with static, A and AA
coefficients. The input feature maps are processed by a set of
convolutional filters then passed through an activation function
to generate the output feature maps as,

O = Wi e o), M
o = oz ), @)

where * is the convolution operator, zt(l}m is the output of the

filter associated with the m!” output feature map for time index
1)

n

t and frequency index f, x§7 is an input local patch cen-

tered around (¢, f) of the n'" feature map, w,, and b% are
the filter and bias associated with the n'" input and m*" output
feature maps, and o is an activation function. After the convo-
lution operation, the resolution of the output feature map can be
reduced using pooling. Here we use max-pooling, which is real-
ized by taking the maximum over non-overlapping rectangular
sub-regions of the feature map. Note that each convolutional
layer is not always followed by a pooling layer.

The convolutional layer is characterized by four numbers
(P x @, N, M), the filter size (P x @) and the number of input
and output feature maps IV, M, respectively. Note that the P x
@ convolution operation over a T' x F' feature map results in a
(T'— P+1) x (F—Q+1) feature map, limiting therefore the
number of convolution layers that can be used.

2.2. Network-in-Network

A deep CNN is obtained by stacking several convolutional lay-
ers. A NiN is a deep CNN architecture, where a 1 x 1 con-
volution layer is added between the standard convolution layer
and the pooling operation. An example of a NiN architecture
is shown in Figure 1-(a). The 1 x 1 convolution layer real-
izes a cross-feature map multi-layer perceptron (MLP) that en-
ables to capture more complex non-linear structures with a very
marginal increase in the number of parameters. The pooling
operation is performed after the 1 x 1 convolutional layer.
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Figure 2: Schematic diagram of a (a) convolutional layer and
(b) context adaptive convolutional layer.

The NiN architecture we used here consists of 4 convolu-
tional layers, 2 pooling layers and 3 fully connected layers. We
used 1 X 2 pooling layers, meaning that we reduce the dimen-
sion of the feature map in the frequency axis by a factor of 2
after pooling.

3. Context adaptive CNN

The proposed CA-CNN is derived from the NiN architecture by
replacing one layer with a context adaptive layer. Figure 2-(b)
is a detailed representation of a context adaptive convolutional
layer. Following our prior work on CA-DNN [27], the context
adaptive convolutional layer is realized by creating K sets of
filters, where K is the number of acoustic context classes we
consider. The convolution operations generate thus M x K

(4)
features maps z, ., ;. as,

(4) _ (1) (i—1) (1)
Z ke = D W * X 0k (€)
where wfi)myk, bgy? ,, are the filter and bias associated with the

k" acoustic context class. The output of the context adaptive
layer is then obtained by the weighted sum of the feature maps,
which are then processed by the activation function as,

K
oy = oY ezl ), @)
k=1

where av, represents the context class weights. This operation

reduces the number of output feature maps back to M/ maps.
Note that Eq. (4) can also be interpreted as a convolutional

layer, which parameters are adapted to the acoustic context by



giving context class weights oy, i.e.,

K
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where vAv£f>m and 55,? are the adapted filter and bias, respec-
tively. Consequently, we can achieve rapid adaptation if the
acoustic context weights ax can be obtained with a small
amount of adaptation data. Note that in contrast to conventional
approaches using i-vectors as inputs, the proposed approach can
also adapt the filter coefficients as shown in Eq. (5).

Building on top of our previous work on CA-DNN [27],
we use an auxiliary network to compute the acoustic context
weights . This small auxiliary network transforms input aux-
iliary features such as i-vectors into the acoustic context class
weights. All parameters of the main network and auxiliary net-
work are jointly trained to minimize the cross entropy (CE).
Consequently the acoustic context class weights and thus class
definitions are optimized for recognition.

In this paper, we apply the context adaptive convolutional
layer to a single layer of the baseline NiN architecture. Fig-
ure 1-(b) illustrates the architecture obtained when factorizing
the second convolutional layer.

4. Relation to prior works

There have been a few related studies investigating the use of
auxiliary features for adaptation of CNNs [17,20,21]. It is more
challenging to incorporate auxiliary features to a CNN than to a
DNN. Indeed, a CNN assumes that the input features obey time
and frequency locality properties. Speech features obey this
property but auxiliary features such as i-vectors may not. Con-
sequently, the i-vectors should be incorporated into the convo-
lutional layer by concatenating the feature with every localized
frequency patch, making the system more complex [21]. An
alternative consists of adding the auxiliary features to the up-
per fully connected layers [20,21], which may potentially limit
the impact of adaptation as lower layers of a DNN are known
to carry more speaker/environment related information than the
upper layers [28].

In [17], i-vectors were also used for speaker adaptive train-
ing of a CNN by using them to compute a bias term that was
directly added to the input features. This approach also trans-
formed i-vectors using an auxiliary network that was jointly
trained with the CNN. However, the auxiliary network outputs
the bias term, where we use it to compute the acoustic class
weights.

Finally, our proposed CA-CNN is also related to other
works that proposed to factorize architectures for DNNs. For
example, the network architecture is similar to that used for
cluster adaptive training of DNNs [30,31], with the main differ-
ence originating from the class weight computation. However,
these approaches have only been investigated for conventional
fully connected DNNSs so far. This paper constitutes to the best
of our knowledge the first attempt to use factorized architectures
for deep CNN adaptation.

5. Experiments

We carried out experiments using the AURORA4 [32] speech
corpus. AURORA4 is a noisy version of WSJO 5k, which in-
cludes different types of noise. There are four evaluation sets,
i.e., A (clean), B (six types of additive noises), C (clean with
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channel distortion), D (six types of additive noises with channel
distortion). All experiments were performed using the multi-
condition training data set of AURORA4, which consists of
83 speakers and about 14 hours of data. The evaluation data
consists of 8 speakers (5 males and 3 females) and 330 utter-
ances. Note that the training and testing conditions are rela-
tively matched for sets A and B, i.e. the training data includes
the same noise and channel conditions as the evaluation data but
the SNRs of training data are 10 —20 dB and those of evaluation
data are 5 — 15 dB. The channel used in sets C and D is unseen
during training.

5.1. Settings

Our baseline system consists of a NiN-based deep CNN archi-
tecture shown in Figure 1-(a). The output consists of 3042 out-
put units corresponding to the HMM states. The speech features
consists of 40 log mel coefficients appended with static, A and
AA coefficients. We employed 11 concatenated speech fea-
tures as input to the DNN (1320 dimensions in total). The input
features were organized into three 11 x 40 time-frequency fea-
ture maps, one for static, A and AA. The speech features were
processed with utterance level mean normalization, and further
normalized using mean and variance normalization parameters
calculated on the training data. We used parametrized ReLU
(PReLU) [33] activation functions for all hidden layers.

‘We used i-vectors as auxiliary features. They were obtained
by training a GMM universal background model (UBM) of
512 dimensions. We then extracted i-vectors of 80 dimensions,
which were finally processed with LDA to reduce their size to
25 components, using the speaker labels to train the LDA trans-
formation. We used in this experiment utterance level i-vectors
computed with Kaldi [34]. In addition to the baseline NiN, we
also compared our proposed method with adding i-vectors to
the input of the first fully connected layer.

The proposed CA-CNN architecture is as discussed in Sec-
tion 2 and shown in Figure 1-(b). The auxiliary network con-
sists of 2 hidden layers each with 25 hidden units with PReLU
activations and an output layer with linear activation as in our
previous work [27]. We used 2 acoustic context classes as it
performed slightly better than using 4 or more classes.

All models were randomly initialized, and directly fine-
tuned using the cross entropy criterion (i.e. we did not use any
pre-training). We used an initial learning rate of 0.01, a mo-
mentum of 0.9 and a batch size of 128. The learning rate was
gradually decreased when the frame accuracy did not improve
for a cross validation set. The learning was stopped after 20
epochs. We used dropout regularization for all fully connected
layers. We used our own decoder to perform the experiments
and employed the Chainer library for training the networks [35]

For all experiments, we used a bigram language models for
decoding unless otherwise stated. The results were evaluated in
terms of word error rate (WER) for the evaluation set.

5.2. Results

Table 1 shows the WER for the three network configurations.
The results for CA-CNN are shown for different factorized hid-
den layers. The baseline NiN is a strong baseline for the task.
We observed that adding i-vectors provided small performance
gains for clean and noisy conditions (sets A and B). The pro-
posed CA-CNN could improve performance in most cases for
test sets A, B and D. Better performance could be achieved
when factorizing the convolutional layers (: = 1,2, 3,4) com-
pared to factorizing the fully connected layers (i = 5,6).
Note that we also tested different configurations of the auxil-
iary network and increased number of acoustic context classes
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Figure 3: Plots of the PCA of i-vectors and acoustic class weights for 2 and 4 classes. Each dot corresponds to one utterance of the
evaluation set. The colors represent the speaker labels, and gender labels for the upper and lower figures, respectively. (Best in color)

Table 1: WERs for the evaluation set of AURORA4 for NiN-
based deep CNN, NiN + i-vectors and the proposed CA-CNN
for different factorized layers (the asterisks indicate convolu-
tional layers). The best results are highlighted with bold fonts.

A B C D Avg.
NiN 53 83 73 170 11.74
NiN + i-vect 49 81 76 169 11.61
CA-CNN(GE=1)* 49 82 77 164 11.44
CA-CNN(Z=2)* 52 81 74 164 1143
CA-CNN(Z=3)* 49 81 73 162 11.28
CACNN(GZ=4)* 49 79 74 161 11.18
CA-CNN (z = 5) 52 80 82 170 11.66
CA-CNN (7 = 6) 53 83 81 164 11.53

but could not obtain significant performance improvements.

Both NiN + i-vectors and CA-CNN could not improve per-
formance on test set C that corresponds to unseen channel mis-
match. This seems to demonstrate a potential limitation of aux-
iliary feature based approaches when dealing with acoustic con-
text completely unseen during training. Performance improve-
ment could probably be obtained if we would perform channel
compensation on the input features. Note that in this experi-
ment, since we are focusing on rapid adaptation, we did not use
CMLLR to adapt the features as it would require more than one
utterance to compute reliable CMLLR transforms.

5.3. Discussion

Figure 3 plots the i-vectors for the evaluation set and the derived
acoustic class weights obtained with the CA-CNN when using
2 and 4 classes. We performed principal component analysis
(PCA) to reduce the features to 2 dimensions to simplify the
visualization.

As shown in Figure 3-(a) the i-vectors encompass speaker
information. The acoustic context class weights shown in Fig-
ures 3-(b) and (c) were obtained by processing the i-vectors
with the auxiliary network. It illustrates what acoustic context
classes are learned by the network. From the top figures the
speaker information seems less distinguishable in the acoustic
class weights than for the i-vectors. In contrast, the auxiliary
network emphasizes the distinction between male and female
speakers as revealed by the two main clusters in the bottom
figures. It is interesting that the auxiliary network learns this
distinction although both the main NiN network and the auxil-
iary networks were randomly initialized. Note that one of the
male speakers is included in the “female” cluster, which may
naturally occur since the acoustic context class weights were
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(c) context class weights
(4 classes)

Table 2: WERs for the evaluation set of AURORA4 using bi-
gram and trigram language models for the stronger baseline sys-
tem with dynamic feature learning (DFL).
bigram trigram

11.58 8.74

10.78 8.23

NiN + DFL
CA-CNN + DFL (i = 4)

computed based only on acoustic features.

When using 4 acoustic context classes, the auxiliary net-
work seems to be able to distinguish even better between gen-
ders. However, we did not observe better performance in the
4 class cases (i.e. WER of 11.20 %). This may be due to the
small amount of training data that prevents proper learning of
a larger number of acoustic context class parameters. We may
thus need to reduce the amount of parameters associated with
each acoustic context class to further improve performance.

5.4. Results with dynamic feature learning

Finally we have tested the proposed CA-CNN with a stronger
baseline that includes 2 additional convolutional layers with fil-
ters of 5 X 1 placed in the bottom of the network. This config-
uration enables learning the dynamic features [25]. In this case,
the input feature consists of 19 frames of 40 dimension log mel
features without A and AA. Table 2 shows the results with
the dynamic feature learning (DFL) baseline for the bigram and
trigram language models. The proposed CA-CNN can provide
significant gains of up to 6% relative improvement even with
this stronger baseline.

6. Conclusion

In this paper we have investigated the use of context adaptive
DNNs to realize rapid adaptation of deep CNNs. We have
demonstrated that the proposed CA-CNN was effective to re-
alize adaptation of NiN based deep CNN architectures and
achieved up to 6 % relative improvement over a strong base-
line. In addition, we have demonstrated experimentally that the
acoustic context classes learned by the CA-CNN were related
to gender information. These results appear promising and sug-
gest that the CA-CNN network can learn meaningful classes.

In future work we will investigate if this behavior can still
be observed when using different auxiliary features such as
noise estimates to realize environmental adaptation. We also
plan to test the proposed CA-CNN for larger tasks, where we
may potentially learn more complex acoustic context class def-
initions.
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