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Abstract

Liveness detection is an important countermeasure against
spoofing attacks on biometric authentication systems. In the
context of audiovisual biometrics, synchrony detection is a pro-
posed method for liveness confirmation. This paper presents
a novel, text-dependent scheme for checking audiovisual syn-
chronization in a video sequence. We present custom visual
features learned using a unique deep learning framework and
show that they outperform other commonly used visual fea-
tures. We tested our system on two testing sets representing
realistic spoofing attack approaches. On our mobile dataset of
short video clips of people talking, we obtained equal error rates
of 0.8% and 2.7% for liveness detection of photos and video at-
tacks, respectively.
Index Terms: text dependent speaker recognition, anti spoof-
ing, audiovisual synchronization, deeply learned audio features

1. Introduction
Audiovisual biometrics is an appealing technology for applica-
tions such as mobile authentication. Authentication that uses
a video recording of a person saying a short pass-phrase or
prompt does not require non-standard hardware. Furthermore,
the fusion of two highly uncorrelated biometrics such as face
and speaker recognition has the potential for accurate and robust
authentication. Aronowitz et al. [1] recently investigated the
merits of audiovisual biometrics, obtaining an Equal Error Rate
(EER) of∼ 0.3% for mobile authentication in smartphones and
tablets. In the past two years, the use of deep learning has led
to even higher accuracy in face recognition [2] and in speaker
recognition [3, 4].

Following these recent breakthroughs in accuracy, a con-
siderable amount of focus has shifted to the risk of spoofing.
Special sessions in Interspeech [5, 6] and in the TABULA-
RASA EU-funded project [7] specifically investigated the risk
of spoofing and corresponding countermeasures.

Optimal speaker recognition accuracy requires the use of
common pass-phrases such as my voice is my password [1]
or OK Google [4]. Conversely, the use of a prompted pass-
phrase (less vulnerable to spoofing), may increase the EER by
a factor of five (Table 4 in [8]). User-selected pass-phrases
may provide a possible compromise between common pass-
phrases and prompted pass-phrases. However, both common
and user-selected pass-phrases are vulnerable to playback and
audio-splicing attacks.

The face modality is also easily vulnerable to a playback
attack. Liveness is hard to ensure unless the user is prompted to
express certain facial expressions or poses.

Chetty [9] proposes the use of synchrony detection in au-
diovisual biometrics. The appeal of this approach in liveness
detection stems from the difficulty in spoofing both modalities
simultaneously, as opposed to the ease of spoofing each modal-
ity independently. Bredin [10] provides a survey of past work,
as does the more recent paper by Marcheret [11]. Most works
try to find some kind of correlation or correspondence between
the time series of audio-based features and the time series of
visual-based features, usually focusing on the mouth as Region
Of Interest (ROI).

The most commonly used acoustic features are the en-
ergy [12] or spectral based MFCC features [13]. Suggestions
for visual features include pixel values [12], Discrete Cosine
Transform (DCT) coefficients [14], lip-based measurements
(height, width, etc.) [9], optical flow [15],and more recently the
scattering-transform [11] and deep learning-based features [11].

The methods used to estimate the correspondence between
audio and visual-based features are: mutual-information [12],
Canonical Correlation Analysis [13], Coinertia Analysis [16],
maximally informative projections [17], Hidden Markov Mod-
els [14], Generalized Bimodal Linear Prediction [18], a time-
delay neural network (TDNN) [19] or a deep neural net-
work [11].

Bregler and Konig [20] showed that the mutual information
between the audio and video streams was maximal when the
lag between audio and video data was approximately 120ms
(in their dataset). Furthermore, the lags are highly context-
sensitive. This finding motivates the non-trivialness of the task.
Other works [21, 22] reported similar findings.

This paper shows a different approach. We are interested
in a text-dependent authentication scenario in which the en-
rollment pass-phrase is identical to the verification pass-phrase
(pass-phrase is either common or user-selected). We exploit
this attribute and deviate from the generic synchrony detection
framework.

We define a new task that we name text-dependent audio-
visual synchrony detection. This task assumes the existence of
an enrollment audiovisual recording from the target person (the
person we are trying to authenticate), with the same spoken text
(pass-phrase) as in the test recording.

We base the motivation for our method on the following: for
every synchronized test recording, there exists a natural align-
ment between the enrollment and test recordings. We can find
the alignment for each modality separately, and the similarity
between the two modality-dependent alignments gives a strong
indication regarding the synchrony of the test recording. In
principle, we can avoid low-level audiovisual processing; that
is, we never compare audio low-level features with visual low-
level features.
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Figure 1: Illustration of the proposed method for text-dependent
synchrony detection. Alignments are computed independently
for the audio and visual modalities, and are expected to be sim-
ilar for synchronized recordings

We experimented with our proposed approach on a multi-
subject, multi-session audiovisual dataset recorded with smart-
phones and tablets held at arms length. This setting significantly
degrades the quality of the audio signal. We observed that the
MFCC features are suitable for estimating accurate alignment
for the audio modality. The alignments obtained for the visual
modality using standard features such as Histogram of Gradi-
ents (HOG), were much less accurate. Therefore, we introduce
a novel, visual-based features using deep learning, with an ob-
jective function that targets finding an accurate alignment.

The rest of this paper is organized as follows: We present
our proposed text-dependent audiovisual synchrony detection
scheme in Section 2. We then provide an overview of the fea-
ture extraction methods in Section 3. We present our dataset,
experiments, and results in Section 4. Finally, we conclude our
work in Section 5.

2. Text-dependent Audiovisual Synchrony
Detection

This paper focuses on the following scenario: for a given test
audiovisual recording (clip), there exists an enrollment clip
from the target person (the real person we are trying to authen-
ticate), with the same text spoken as in the test clip.

For a synchronized test clip, we claim that a single
modality-independent temporal alignment exists between the
enrollment and test clips (Figure 1). We can estimate modality-
dependent alignments by processing each modality indepen-
dently, and measure the similarity between the modality-
dependent alignments. We then use the similarity degree as an
indication for audiovisual synchrony of the test recording.

The framework we propose has the following advantages.
First, we can avoid low-level audiovisual processing (the tem-
poral alignments are per modality). Second, the context-
dependent lagging reported by Bregler [20], which degrades the
standard techniques reviewed in ??, does not affect our method.
Lastly, our proposed framework generally does not require any
audiovisual training data. In practice, to achieve the best results,
we use audiovisual training data to train visual-based features,
as shown in ??.

2.1. Algorithm

Given enrollment and test clips, we first apply a voice activity
detector (VAD) on the audio streams to locate and remove lead-
ing and trailing silences from both audio and visual streams.
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Figure 2: (a) Distance Matrix of the audio features, with the
corresponding alignment path marked by a dashed line. (b) Dis-
tance matrix of the visual features. The projected audio align-
ment path is marked by a dashed line. The visual alignment
path, as calculated by the DTW method, is marked by a solid
line.

The audio streams are then divided into evenly-spaced over-
lapping frames (50 frames per second (fps)), and each frame
is represented by a feature vector. Correspondingly, the visual
streams are composed of sequences of frames (30 fps). Each
frame is also represented by a feature vector.

Let a1,1, . . . , a1,m1 and a2,1, . . . , a2,m2 denote the audio-
based feature sequences for enrollment and test clips, respec-
tively. Let v1,1, . . . , v1,n1 and v2,1, . . . , v2,n2 denote the corre-
sponding visual-based feature sequences. We use the Dynamic
Time Warp (DTW) [23] method to find a temporal alignment
α : [1, . . . ,m1] → [1, . . . ,m2], which maps audio sequence
a1,1, . . . , a1,m1 into a2,1, . . . , a2,m2 , and a temporal alignment
µ : [1, . . . , n1] → [1, . . . , n2], which maps the respective
visual sequences. The DTW algorithm outputs both the opti-
mal temporal alignment Sa and a corresponding score Sv . The
DTW score is the integral of the corresponding weight matrix
along the alignment path.

We re-sample DTW alignment α to match the frame rate
of the visual stream (setting now m1 to n1 and m2 to n2). We
thus create a path that represents the audio-induced alignment in
the visual domain (Figure 2. We integrate this path on the visual
distance matrix,Dv , to get the score of the audio-induced visual
alignment Sṽ . Next we define the synchrony score Ssync, as the
difference between the score of the audio-induced alignment in
the visual domain and the score obtained using unconstrained
DTW in the visual modality,

Ssync = Sṽ − Sv, (1)

where a smaller Ssync refers to better synchronization.

3. Features for Synchrony Detection
This section describes the features we use to parameterize the
audio and visual streams.

3.1. Audio-based Features: MFCCs

The audio is parameterized by low-level spectral-based Mel
scale Cepstral Coefficients (MFCCs) [24], which are standard
in speech processing. MFCCs are extracted at a frame rate of
50 fps, 20 coefficients per frame.
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Figure 3: Illustration of the proposed deep learning-based vi-
sual features
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Figure 4: Illustration of the proposed Siamese network for train-
ing the deep visual features for text-dependent synchrony detec-
tion

3.2. Visual Stream Pre-processing

We used the Viola-Jones face detector [25] to first detect the
face in each video frame. Next we used ASM (Active Shape
Model) [26, 27] to locate the lips, and crop a 30 × 50 pixel
region around the lips. We use only the 30 × 50 crops for all
further processing (?? and ??). Although we have to establish
the facial pose in each frame, state-of-the-art algorithms [27]
enable near real-time processing of the video stream.

3.3. Visual-based Features: HOG

HOG is a shape descriptor that has been successfully applied to
human detection and face recognition. We compute it as fol-
lows: 1) each sample is evenly divided into 16 × 16 cells; 2)
for each cell, we calculate a histogram of 8 gradient orientation
bins (in 0− 2π) (see details of HOG in [28]).

3.4. Visual-based Features: Deep Learning-based

Figure 3 illustrates the deep learning network architecture. The
network has three convolution layers, followed by two fully
connected layers. Rectified linear units are applied after each
layer, except for the last fully connected layer. The input to the
Convolutional Neural Network (CNN) is a stack of 5 consecu-
tive 30 × 50 mouth crops. The motivation for stacking frames
in time is to capture lip movement.

We used a Siamese architecture [29] (Figure 4) to train the
network. In each iteration, the network is given a pair of lip
stacks, V1 and V2 and a label y, which is either 0 if the lips
differ and 1 if the lips match. The loss function L

L =
1

2N

N∑
i=1

yid
2
i + (1− yi)max(δ − di, 0)2, (2)

where yi and di are the label and Euclidean distance for the i-th
lip stack pair respectively, and δ is a predefined margin. The
selection of positive pairs of lip stacks for training is as follows:

1. Select a pair of positive clips (same person and text).

clip 1fdfct0
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fb
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Figure 5: MFCC distance matrix of two clips. fa and fc repre-
sent a negative pair while fb and fd represent a positive pair.

2. Extract MFCC features for each clip.

3. Find the optimal DTW path for the MFCC features.

4. Enumerate pairs of MFCC frames along the DTW path,
whose distance is below a predetermined threshold.

5. For each such pair of MFCC frames find a pair of visual
frames in the corresponding clips, closest in time to the
MFCC frames.

6. For each such pair of visual frames, form a positive train-
ing sample using the corresponding lip stacks.

Negative training sample selection is similar. However, in-
stead of sampling along the DTW path, the pairs of frames
are sampled at the maximal pairwise distance measure between
MFCC frames.

This selection scheme of positive and negative pairs encour-
ages the network to produce visual features that mimic the cor-
respondence between MFCC features. Figure 6 illustrates the
selection process.

4. Experiments
4.1. Dataset

We recorded the dataset using an iPad-2 and an iPhone-5. Each
of the 41 subjects had two or three recorded sessions on each
device. A session includes a subject repeating the following
phrases three times: my voice is my password and please verify
me with the number. We used 5-fold cross-validation to train the
deep visual features. That is, for each experiment we used 80%
of the data for training, and the remaining 20% for evaluation
(subjects in the training and the evaluation subsets are disjoint).
The average net length of each phrase is 1.5s.

4.2. Training Setup of the Deep Visual Features

The training set was constructed as follows. For each subject
and each pass-phrase, we selected all pairs of clips (12915, in-
cluding cross-device pairs). For each such pair we found an
optimal alignment using DTW on the audio (MFCC) stream.
We then extracted 60 positive samples (pairs of audio and vi-
sual frames) along the DTW alignment, and 60 negative sam-
ples taken randomly off the DTW alignment. The total number
of samples was 1.5M.

We used 10% of the data set during training to evaluate the
learning progress. Again, we made sure that the subjects in the
training and evaluation subsets were disjoint.
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Figure 6: Example of an image used for creating the static im-
age video attack (here the face is pixelated for privacy)

4.3. Photo Spoofing Attack Scenario

The first spoofing scenario we tested simulates an attacker us-
ing an audio of the subject saying the correct pass-phrase, and
using a static image of the subject as a visual attack. To create
the dataset we used one static image per subject (Figure 6. We
held each image in front of a camera, and took a video while
slightly moving the image to mimic ‘liveness’. We created 25
such videos corresponding to 25 subjects from the smartphone
dataset.

To create the testing set, we selected all pairs of clips for
each subject (of the 25 subjects subset) and each pass-phrase.
These served as the positive pairs. We matched a negative pair
for each positive pair by replacing the visual stream of the sec-
ond clip with the static image video of the corresponding sub-
ject.

4.4. Live Video Spoofing Attack Scenario

The second spoofing scenario is more challenging. Similar to
the training setup, we selected all pairs of clips (4208 pairs,
same-device only) for each subject and each pass-phrase. The
selected pairs served as positive pairs. For each positive pair we
created a corresponding negative pair by replacing the visual
stream of the second clip with a different visual stream. We
used a different pass-phrase from the original pair of clips.

4.5. Results

Table 1 shows the results for the photo spoofing attack scenario,
using deep learning-based visual features. On average, we ob-
tained an EER of 1.55% for a single clip enrollment, and 0.75%
for 3-clip enrollment.

Table 1: EERs (in %) for the photo spoofing attack using deep
learning-based visual features

Pass-phrase Enrollment: 1 clip Enrollment 3 clips
My voice... 1.6 0.6

Please verify... 1.5 0.9
Average 1.55 0.75

Table 2 shows the results for the live video spoofing attack
scenario using deep learning-based visual features. On average,
we obtained an EER of 4.6% for single clip enrollment, and
2.7% for 3-clip enrollment. .

Table 3 shows the results for the live video spoofing attack
scenario using HOG features instead of deep learning-based

Table 2: EERs (in %) for the live video spoofing attack using
deep learning-based visual features

Pass-phrase Enrollment: 1 clip Enrollment 3 clips
My voice... 4.1 2.4

Please verify... 5.1 3.0
Average 4.6 2.7

features. The error rates are ∼ 3 times higher compared to
using deep learning-based features.

Table 3: EERs (in %) for the live video spoofing attack using
HOG-based visual features

Pass-phrase Enrollment: 1 clip Enrollment 3 clips
My voice... 17.4 12.4

Please verify... 22.1 17.5
Average 19.8 15.0

5. Conclusions and Future Work
We address the problem of liveness detection by introducing a
novel, text-dependent audiovisual synchrony detection scheme.

Our work assumes the availability of enrollment clips for
speaker and face recognizers. We further assume that the same
pass-phrase is used for both enrollment and authentication. Ex-
ploiting these assumptions eliminates the need to actually com-
pare the audio and visual-based low-level features. Further-
more, the availability of enrollment clips implies that the algo-
rithm can be fine-tuned to different use cases, and thus enhance
its robustness.

We evaluated our method on two spoofing scenarios. The
first is a photo attack, in which we obtained an EER of less than
1%. The second and more challenging attack is based on a live
video attack where a genuine visual stream of the target person
is coupled with a different audio recording of the target person.
For this scenario we obtained an EER of 2.7%.

Comparing our results to previous work is not straightfor-
ward, since the type of data, definition of synchronization task,
length of clips, and amount of training data differ. In general,
most previous works obtain significantly higher EERs than ours,
on longer clips.

The EERs reported in [11] are lower than ours; however,
their goal to detect a temporal offset between audio and visual
streams was different from ours.

The analysis of our results indicates a high correlation be-
tween synchrony detection errors and face recognition errors.
Therefore, the impact of our synchrony detection errors is prob-
ably lower than presented.

Our ongoing work includes investigation of different scor-
ing techniques, improvement of the deep learning framework,
and further testing on other datasets.
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