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Abstract
Optimization procedure is crucial to achieve desirable perfor-
mance for speech recognition based on deep neural networks
(DNNs). Conventionally, DNNs are trained by using mini-batch
stochastic gradient descent (SGD) which is stable but prone to
be trapped into local optimum. A recent work based on Nes-
terov’s accelerated gradient descent (NAG) algorithm is devel-
oped by merging the current momentum information into cor-
rection of SGD updating. NAG less likely jumps into local
minimum so that convergence rate is improved. In general, op-
timization based on SGD is more stable while that based on
NAG is faster and more accurate. This study aims to boost
the performance of speech recognition by combining compli-
mentary SGD and NAG. A new hybrid optimization is pro-
posed by integrating the SGD with momentum and the NAG
by using an interpolation scheme which is continuously run
in each mini-batch according to the change rate of cost func-
tion in consecutive two learning epochs. Tradeoff between two
algorithms can be balanced for mini-batch optimization. Ex-
periments on speech recognition using CUSENT and Aurora-4
show the effectiveness of the hybrid accelerated optimization in
DNN acoustic model.
Index Terms: hybrid optimization, stochastic gradient descent,
deep neural network, speech recognition

1. Introduction
Deep learning has become a popular research topic for speech
recognition in recent years. Many researchers have demon-
strated that deep neural network (DNN) based speech recogni-
tion can significantly reduce word error rate over the traditional
system using Gaussian mixture model based hidden Markov
model (GMM-HMM) [1, 2]. However, training such a com-
plex DNN model with tens of thousands of parameters is a
big challenge to build a desirable speech recognition system.
Challenge is twofold. First, the computation cost is demand-
ing because iterative training procedure is run for individual
parameters. Second, the convergence of training procedure is
not always guaranteed due to the non-convex DNN model. To
deal with these issues, the parallel training algorithm [3] was
developed to speed up training procedure for abundant model
parameters. In addition, the convergence of training procedure
could be improved by introducing acceleration scheme in op-
timization algorithm. This paper presents a hybrid accelerated
optimization procedure for DNN speech recognition.

In the literature, stochastic gradient descent (SGD) [4, 5]
has been known as a very popular optimization algorithm for
DNN speech recognition where the cross-entropy error function
is minimized from mini-batches of speech data. This method re-
quires an adaptive learning rate to assure convergence in learn-
ing process. The drawback of SGD is that the training proce-
dure is prone to be slow due to the flatness in the gradients of

model parameters [6, 7]. Therefore, the momentum method was
implemented to catch the velocity information through acceler-
ating the descent when the gradients in successive two learning
epochs keep the same direction and slowing down the updating
rule when the direction of gradients is changed [8, 9]. More
recently, the second-order optimization methods were proposed
to improve the convergence of learning [10, 11, 12]. In [13, 14],
the Hessian-free optimization was developed by simulating and
calculating Hessian matrix indirectly. The second-order infor-
mation as the curvature near the parameters was used to speed
up the updating rule. However, this method is demanding on
the memory and computation costs.

This paper focuses on the first-order optimization and pro-
poses a training algorithm which captures the complimentary
capabilities of SGD and Nesterov’s accelerated gradient descent
(NAG) [15] algorithms. Basically, SGD is capable of conduct-
ing the stable learning while NAG is seen as a solution to speed
up learning procedure. We integrate these two algorithms into
a unified training framework. This hybrid algorithm continu-
ously interpolates both optimization methods based on the con-
vergence rate of error function from consecutive two learning
epochs. Accordingly, an integrated optimization is developed to
effectively balance the tradeoff between SGD with momentum
and NAG. We therefore accelerate the parameter updating and
reach a stable optimum in learning schedule. The experiments
on speech recognition are conducted to illustrate the merit of
this hybrid learning algorithm for deep acoustic modeling. This
paper is organized as follows. Section 2 surveys and evaluates
the optimization algorithms for DNN and simulation function.
Section 3 proposes the hybrid accelerated optimization which
balances the tradoff between two methods. Experiments on
CUSENT and Aurora-4 tasks are reported in Section 4. Con-
clusions from this study are drawn in Section 5.

2. Background survey
2.1. Optimization in deep neural network

The traditional speech recognition system was built by using
acoustic model based on GMM-HMMs. In recent years, DNNs
have been popularly developed. Basically, DNN can replace
GMM for calculating the posterior probabilities of individual
HMM states given a phonetic unit. Such an acoustic model is
known as the DNN-HMM. DNN optimization is a non-convex
problem. No closed-form solution exists. There are two passes
in DNN iterative training procedure based on the error back-
propagation algorithm. In forward pass, the input speech obser-
vations are propagated layer by layer towards softmax outputs
for class posteriors. An affine transformation and a non-linear
activation are computed for individual units in each layer. In
backward pass, we calculate the gradients of cross entropy error
function with respect to DNN parameters and update the model
parameters according to the stochastic gradient descent (SGD)
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Figure 1: Geometrical interpretation for SGD with momentum
(left) and NAG (right).

algorithm by using mini-batch data

wτ+1 = wτ − ητ∇E(wτ ) (1)

where wτ and ητ denote the parameter vector and learning rate
using a mini-batch indexed by τ , respectively, and∇E denotes
the gradient with respect to wτ . To obtain∇E(wτ ), local gra-
dients of individual weights are calculated from mini-batch data
and then propagated from output layer back to input layer.

2.2. Accelerated optimizations

In general, SGD learning is stable but suffers from the circum-
stance that the learning procedure gets slower in later training
stage. To deal with this issue, it is popular to incorporate the
momentum mechanism into SGD learning. Learning speed is
increased by taking into account the learning velocity. Basi-
cally, this mechanism is performed by increasing the step size
when the gradient keeps the same learning direction but de-
creasing the step size when the gradient varies the learning di-
rection. Therefore, SGD with momentum can correct the gradi-
ent by using the velocity information of model parameters. The
updating rule of SGD with momentum is run by

wτ+1 = wτ +Δwτ+1

where Δwτ+1 = μτΔwτ − ητ∇E(wτ ).
(2)

In addition to the term −ητ∇E(wτ ), the velocity or the ad-
justment of parameters Δwτ+1 at new iteration using current
mini-batch is formed by further incorporating the velocity Δwτ

at old iteration using previous mini-batch. μτ is merged as the
momentum parameter. The learning speed is increased when
consecutive two iterations hold the same learning direction.

In [15], Nesterov’s accelerated gradient descent (NAG) was
proposed as an alternative to accelerate the SGD with momen-
tum. The idea of NAG was designed by calculating the gradient
by using the information from model parameters as well as mo-
mentum term. Therefore, NAG may accelerate the updating rule
and early correct the updating which is not so reliable. Accord-
ingly, NAG more likely skips local minimum by calculating the
velocity at new iteration or mini-batch by

Δwτ+1 = μτΔwτ − ητ∇E(wτ + μτΔwτ ) (3)

where wτ is now replaced by wτ + μτΔwτ when calculating
the gradient term∇E.

2.3. Comparison for optimization methods

The key difference between SGD with momentum and NAG
is the calculation of gradient term. NAG merges the current
momentum μτΔwτ into calculation of gradient for parameter
updating at new iteration τ + 1. Different from SGD with mo-
mentum, NAG conducts the scheme of looking ahead so that
the resulting gradient may speed up learning and prevent the
learning procedure trapping into local minimum. Figure 1 il-
lustrates that if the momentum term and the gradient term point
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Figure 2: Learning curves for simulation functions.

to the same direction, the updating will be much larger than the
updating which considers the gradient term but without momen-
tum term. NAG shows that the weight jumps a step size μτΔwτ

for calculation of gradient at wτ + μτΔwτ so that NAG can
correct the updating faster than SGD with momentum.

Table 1: Number of iterations for finding optimum of simulation
functions in Figure 2(a), 2(b), 2(c) and 2(d).

Simulated Function SGD SGD (m) NAG

three-hump camel (a) 72 72 72
three-hump camel (b) 161 81 63

Rosenbrock (c) 4627 2293 2115
Rosenbrock (d) 4627 386 340

We conduct a case study of optimization learning for find-
ing the optimum of a simulation function by using SGD, SGD
with momentum (denoted by SGD (m)) and NAG. The simu-
lation function is a three-hump camel function f(wx, wy) =

2w2
x + 1.05w4

x +
w6

x
6

+ wxwy + w2
y in Figures 2(a) and 2(b)

where the optimum is located at (0, 0) but with different mo-
mentum parameter μ and learning rate η. The other simulation
function is the Rosenbrock function f(wx, wy) = (1−wx)

2+
10(wy − w2

x)
2 in Figures 2(c) and 2(d) where the optimum is

located at (1, 1) with different μ and η. We set the same ini-
tial position at (0.5, 1.5). Two-dimensional parameters wx and
wy are updated iteratively using the optimization algorithm un-
til the parameters reach to the optimum. Figure 2(a) shows that
the learning curves of different methods are the same because μ
is 0. In Figures 2(b), 2(c) and 2(d), SGD uses many more iter-
ations than the other methods while NAG corrects the updating
direction faster than the others. The number of iterations for
arriving at optimum is compared in Table 1. NAG is faster and
SGD is slower in terms of iteration number for convergence.

3. Hybrid optimization
This paper presents a hybrid accelerated optimization for DNN
parameters and applies it for speech recognition. Our idea is to
boost speech recognition performance by combining the com-
plimentary SGD and NAG optimizations. In general, learning
procedure using SGD is more stable while NAG usually runs
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faster in convergence and less likely traps into local minimum.
We would like to capture the stability and acceleration in opti-
mization by combining SGD with momentum and NAG. This
hybrid optimization is implemented by two realizations. One is
hard combination and the other is soft combination.

3.1. Hard hybrid optimization

Hybrid optimization using hard combination is realized through
a switching scheme between SGD with momentum and NAG.
Either SGD with momentum or NAG is active in each learning
epoch. In this implementation, we use the approximate solution
to NAG algorithm. Starting from Eq. (3), NAG algorithm is re-
alized by Δwτ+1 = μτΔwτ−ητ∇E(ŵτ ) where the gradient
∇E is calculated by using the predictor

ŵτ = wτ + μτΔwτ (4)

which can be manipulated to construct the updating rule [16]

ŵτ+1 = ŵτ − μτΔwτ +Δwτ+1 + μτ+1Δwτ+1

= ŵτ + μτμτ+1Δwτ − ητ (1 + μτ+1)∇E(ŵτ ).
(5)

This updating is iteratively performed to find the parameters
ŵτ+1 which will approximate and converge to wτ+1. Inter-
estingly, the fashion of updating is similar to that in Eqs. (2)
and (3). However, this NAG algorithm adopts two iterations of
momentum parameters μτ and μτ+1 in the updating rule.

In general, NAG is unstable in early training stage. When
implementing the hard hybrid optimization, we first apply SGD
with momentum in Eq. (2) for parameter updating. After updat-
ing by using T mini-batches in a learning epoch, we examine
the convergence rate of cross-entropy error functions by using
wT in current epoch and the best parameters wb in previous
epoch

γ =
E(wb)− E(wT )

E(wb)
, 0 ≤ γ ≤ 1. (6)

To assure model generalization, we use a small set of validation
data to calculate this measurement. If this value is smaller than
a threshold θ, the optimization is switched to NAG algorithm
in Eq. (5) so as to accelerate the updating procedure in next
learning epoch. Otherwise, this system will keep running SGD
with momentum in next epoch. The best parameters are subse-
quently refreshed by wb ← wT after each learning epoch. By
using this hybrid optimization, we can automatically adapt the
optimization procedure in different epochs in accordance with
this convergence rate.

3.2. Soft hybrid optimization

A weakness of hard hybrid optimization is the determination of
threshold θ for judging either SGD or NAG which is generally
sensitive in system performance and should be empirically de-
termined in different tasks. To tackle this problem, we propose
a soft hybrid optimization to balance the tradeoff between the
stability using SGD and the acceleration using NAG without a
switching threshold θ. Our idea is to conduct a tight fusion of
SGD with momentum and NAG in each min-batch and learning
epoch based on a single updating rule

wτ+1 = wτ + μτ [γ + (1− γ)μτ+1] Δwτ

− ητ [γ + (1− γ)(1 + μτ+1)]∇E(wτ )
(7)

where the second term and the third term in right-hand-side
are obtained by linearly interpolating the corresponding terms

in Eqs. (2) and (5) through an interpolation parameter γ. In
Eq. (7), the velocity Δwr is updated by following the style of
momentum method in Eq. (2). Basically, parameter γ balances
the tradeoff between SGD and NAG which is measured by the
convergence rate of error function as given in Eq. (6). Simi-
lar to hard hybrid optimization, this parameter is determined in
each learning epoch by using validation data. The updating rule
adopts the same γ for all mini-batches in next learning epoch.
In an extreme case, if parameter γ = 1 is calculated, we equiv-
alently perform SGD with momentum to slow down learning
step. If γ = 0 happens, this optimization is reduced to NAG
optimization to speed up learning. However, a real-valued pa-
rameter γ paves a solution to soft hybrid optimization which
simultaneously and consistently captures the stability and ac-
celeration at each mini-batch updating for DNN optimization.
The mini-batch optimization algorithm using soft combination
is constructed in Algorithm 1.

Algorithm 1 Soft hybrid optimization using T mini-batches
1: Given w0 ∈ R

N , η0 > 0 and μ0 > 0
2: wb = w0

3: for epoch = 1, 2, 3, · · · do
4: for τ = 0, 1, 2, · · · , T do
5: Compute∇E(wr)

6:
wτ+1 ←wτ + μτ [γ + (1− γ)μτ+1] Δwτ

− ητ [γ + (1− γ)(1 + μτ+1)]∇E(wτ )
7: Δwτ+1 ← μτΔwτ − ητ∇E(wτ )
8: end for
9: Compute γ ← E(wb)−E(wT )

E(wb)

10: wb ← wT

11: end for

4. Experiments
We compare different optimization methods for DNN speech
recognition in terms of learning curve and word error rate
(WER) by using CUSENT and Aurora-4 tasks. SGD with mo-
mentum (or simply denoted by SGD), NAG, SGD-NAG-hard
(hard hybrid optimization) and SGD-NAG-soft (soft hybrid op-
timization) are implemented. CUSENT is a read speech cor-
pus consisting of continuous Cantonese utterances collected in
a quiet room [17]. There are 20,400 training utterances from
34 males and 34 females and 1,200 test utterances from the
other 6 males and 6 females. Aurora-4 is a noisy English
speech database. Training set contains 7,137 utterances from
83 speakers totally 14 hours. The evaluation set has 4,620 utter-
ances from 8 speakers. There are 14 evaluation sets which are
grouped into subsets A (clean data), B (noisy data), C (clean
data with channel distortion), and D (noisy data with channel
distortion). A small set of training data is held out for valida-
tion in CUSENT and Aurora-4 tasks.

4.1. Experimental setup

In the experiments, Kaldi toolkit [18] was used for DNN speech
recognition. The input feature vector consisted of 40 FMLLR
features in CUSENT task and 40 FBNK features in Aurora-4
task. Each frame contained features from current frame and
±5 contextual frames. The input dimension for DNN was 440
(40×11). Bi-phone models in CUSENT and triphone models
in Aurora-4 were constructed by using decision tree state tying.
In CUSENT, DNN architecture was constructed by 6 hidden
layers where each layer had 1024 hidden neurons. In Aurora-
4, there were 7 hidden layers with 2048 neurons in each layer
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Figure 3: Learning curves by using different optimization meth-
ods under (a) CUSENT task and (b) Aurora-4 task.

[19, 20, 21]. Language model (LM) for decoding was based on
bigrams for CUSENT and trigrams for Aurora-4.

In the implementation, GMM-HMMs were trained to find
the state alignment of training data for initialization of a DNN-
HMM system. During DNN training, the weight parame-
ters were pre-trained by using the restricted Boltzmann ma-
chine. The training features were then propagated through
the network. After the forward computation, the error back-
propagation was run to calculate the gradients for updating in-
dividual weights. The initial learning rate was η0 = 0.008,
the momentum value was μ0 = 0.3, and the threshold was
θ = 0.01 in CUSENT task. In Aurora-4, we used η0 = 0.008,
μ0 = 0.3 and θ = 0.005. These parameters were empiri-
cally selected from validation data. Based on the convergence
rate of validation data, the learning rate was exponentially de-
cayed. The momentum value was fixed in training procedure.
The mini-batch size of 256 frames was adopted. After all mini-
batches run in a learning epoch, we compute the convergence
rate γ using validation data and conduct the updating for the
next epoch. DNN acoustic model is iteratively trained through
learning epochs until convergence. During decoding phase, LM
is applied to decode the most likely word sequence.

4.2. Experimental results

First of all, we illustrate the learning curves of training data and
WERs of test data by using GMM-HMMs and DNNs where
four optimization algorithms are compared under CUSENT
task. Figure 3(a) displays the cross-entropy error function ver-
sus the learning epoch. Basically, four optimization methods
converge in learning procedure although NAG and SGD-NAG-
hard oscillate a bit by learning epochs. SGD-NAG-soft runs a
smooth learning curve with the lowest error among four meth-
ods. Table 2 reports WERs of using different models and differ-

Table 2: WERs (%) of GMM-HMMs and DNNs by using differ-
ent optimization methods. CUSENT task is evaluated.

Model WER (%)

GMM-HMM 9.77
DNN (SGD) 7.34
DNN (NAG) 7.29

DNN (SGD-NAG-hard) 7.23
DNN (SGD-NAG-soft) 7.09

Table 3: WERs (%) of GMM-HMMs and DNNs by using differ-
ent optimization methods. Aurora-4 task is evaluated.

Model A B C D Avg.

GMM-HMM 7.29 12.97 12.61 27.66 18.83
DNN (SGD) 3.47 7.72 10.59 22.12 13.79
DNN (NAG) 3.40 7.74 10.18 22.33 13.88

DNN (SGD-NAG-hard) 3.29 7.60 10.14 22.00 13.65
DNN (SGD-NAG-soft) 3.19 7.43 9.98 20.91 13.09

ent optimization methods. DNN-HMMs perform significantly
better than GMM-HMMs. NAG is slightly better than SGD but
worse than hard and soft combinations of SGD and NAG. SGD-
NAG-soft achieves lower WER than the other methods.

Figure 3(b) and Table 3 display the learning curves
and WERs by using different optimization algorithms under
Aurora-4 task, respectively. WERs are averaged over four con-
ditions including one subset of A, six subsets of B, one subset of
C and six subsets of D. Basically, the cross entropy error func-
tions using four methods converge in their learning procedure.
Among these methods, the lowest training error is achieved by
using SGD-NAG-soft. SGD-NAG-hard algorithm is relatively
unstable. Hybrid optimization obtains lower training error than
individual optimization. In this task, SGD with momentum
has lower error than NAG. In terms of WER, DNN outper-
forms GMM-HMM. Hybrid optimizations SGD-NAG-hard and
SGD-NAG-soft perform better than individual methods SGD
and NAG. SGD obtains lower WER than NAG. In this com-
parison, the lowest averaged WER 13.09% is achieved by the
proposed SGD-NAG-soft which runs a stable and accelerated
learning procedure in presence of multi-condition training data.

5. Conclusions
We have presented a joint optimization algorithm which bal-
anced the tradeoff between the stability of using SGD with mo-
mentum and the acceleration of using NAG. The hybrid SGD
and NAG could be realized by hard combination as well as
soft combination. Hard combination employed a switching
scheme in learning procedure and ran either SGD with mo-
mentum or NAG based on the convergence rate of new epoch
relative to current epoch by using validation data. A thresh-
old was required in a hard decision. Alternatively, we fused
SGD with momentum and NAG through an interpolation mech-
anism where the convergence rate was used as the interpolation
weight. It became a natural fusion of SGD with momentum and
NAG which relied more on NAG when convergence rate was
low and on SGD when convergence rate was high. Such a single
updating rule was run in each mini-batch of a learning epoch.
The proposed algorithm was evaluated for DNN acoustic mod-
eling based on learning curve and WER. Experimental results
show the effectiveness of soft integration of SGD with momen-
tum and NAG for clean speech recognition using CUSENT as
well as noisy speech recognition using Aurora-4.
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