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Abstract

Building text-to-speech (TTS) systems requires large amounts
of high quality speech recordings and annotations, which is a
challenge to collect especially considering the variation in spo-
ken languages around the world. Acoustic modeling techniques
that could utilize inhomogeneous data are hence important as
they allow us to pool more data for training. This paper presents
a long short-term memory (LSTM) recurrent neural network
(RNN) based statistical parametric speech synthesis system that
uses data from multiple languages and speakers. It models lan-
guage variation through cluster adaptive training and speaker
variation with speaker dependent output layers. Experimental
results have shown that the proposed multilingual TTS system
can synthesize speech in multiple languages from a single model
while maintaining naturalness. Furthermore, it can be adapted to
new languages with only a small amount of data.

Index Terms: statistical parametric speech synthesis, multi-
lingual acoustic modeling, long short-term memory, recurrent
neural networks

1. Introduction

Deep neural networks (DNNs) have been widely adopted in vari-
ous applications in machine learning, including text-to-speech
(TTS) systems. Zen et al. [1] first introduced feed forward DNNs
to statistical parametric speech synthesis [2] and showed that
DNNSs could achieve better naturalness than the conventional
hidden Markov model (HMM) based systems [3] even with the
same number of parameters. Later, long short-term memory
(LSTM) based recurrent neural networks (RNNs) were adopted
to model the inherent temporal and long-term dependencies in
speech signals [4, 5], which shifted the parametric TTS from
frame-based modeling to more desired sequence-based model-
ing. Unlike HMMs, neural network models can handle very
large amount of training data, which they commonly require.
However, for TTS systems, high quality speech recordings and
annotations are required, which becomes a bottleneck for neural
network based statistical parametric speech synthesis.

Human speech contains rich information besides the lin-
guistic meaning, such as individual speaker characteristics and
emotional states. Being able to analyze, understand and model
variation is of crucial importance if it occurs within a dataset. In
conventional speech processing systems, acoustic factorization
[6] has provided a good foundation for modeling inhomogeneous
variation. It represents each affecting factor with separate trans-
forms and then builds a canonical model set given the combined
transform for all the factors. Speaker and language are the two
primary factors that influence speech generation. To model them,
a speaker and language factorization (SLF) framework was pro-
posed and justified for HMM-based statistical parametric speech
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synthesis [7]. It represents the speaker characteristics with the
constrained maximum likelihood linear regression (CMLLR)
transforms [8] and models the language information through
cluster adaptive training [9]. With this factorization, speech
data from different languages and speakers could be utilized to
build a single TTS system. Even if only a single language is
required, for a limited data scenario, the increased amount of
training data for acoustic modeling obtained by using speech
data from multiple speakers in different languages would also be
beneficial. More importantly, if the amount of data from a new
language is limited, the synthesis system can be adapted to the
new language by estimating only the corresponding language
and speaker transforms, which have far fewer parameters and
can be more reliably trained.

This paper explores the building of TTS systems with speech
data from different languages and speakers. Inspired from the
SLF framework, the proposed system models language varia-
tion through cluster adaptive training and speaker variation with
speaker dependent output layers. The rest of the paper is orga-
nized as follows: section 2 explains the proposed multi-language
multi-speaker (MLMS) TTS system in detail; section 3 and sec-
tion 4 experimentally justify the proposed system through both
objective and subjective evaluations. Concluding remarks are
presented in the last section.

2. Multi-Language Multi-Speaker Acoustic
Modeling

The proposed multi-language multi-speaker (MLMS) acoustic
modeling system adopts cluster adaptive training (CAT) [10] for
modeling the language variation and speaker dependent output
layers [11] for the speaker variation. The LSTM model structure
used for building up the MLMS system is similar to the unidirec-
tional LSTM-based TTS system developed in [5], which consists
of an input projection layer with rectified linear activation func-
tion (ReLU) [12], several LSTM [13] layers and an RNN output
layer [5].

In the MLMS system, given a sequence of words from lan-
guage u, a language dependent text analysis module is first run
to extract a sequence of universal linguistic feature vectors. One
way to define a universal linguistic feature set is to map each
language to a canonical representation, such as those based on
the international phonetic alphabet (IPA) [14]. However, for sim-
plicity, the union of the linguistic feature sets of all the languages
is used in the MLMS system. In this way, for each language,
the same text analysis module that is used for building single
language, single speaker TTS systems can be used directly. After
that, zero padding is used for feature dimensions that are not
available in the current language, which extends those language
dependent linguistic feature vectors to the universal represen-
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Figure 1: Architecture for the LSTM-based multi-language multi-
speaker TTS system. It consists of a mean tower, L language
basis towers and S speaker dependent RNN output layers.

tation for all the languages. A duration model is then used to
convert them to a sequence of frame-level linguistic feature vec-
tors: {@1, -+ , @, -, @7 }. In this study, the oracle duration
information was used for simplicity. For each frame at time step
t, the feature vector x; together with a language ID u and a
speaker ID s is passed through the LSTM-based MLMS acoustic
model (Figure 1) to output a vocoder parameter feature vector
¥ for the desired language u and speaker s, which is then
forwarded to a vocoder [15] to synthesize the final waveform sig-
nal. As depicted in Figure 1, the LSTM-based MLMS acoustic
model consists of four major components:

1) mean tower M™*" | a sub-network of any type, which cap-
tures the shared knowledge across different training lan-
guages.

2) language basis towers M,** for [ € {1,---, L}, a set of
sub-networks trained to capture different variation. For
this study, they were optimized to build up a language
space that models the variation of all the training lan-
guages. L is the dimension of the language space.

3) language code vector A for each of the training lan-
guages u € {1,---,U}. The total number of training
languages, U, is usually larger than the dimension of the
language space, L, which forces the clustering of the
given set of training languages and encourages informa-
tion sharing.

spkr
s

4) speaker dependent RNN output layer M one for each

training speaker s € {1,---,S}.
The vocoder parameters generated by the MLMS system for

(u,s)

language u and speaker s, y, ', can be derived as follows:

h{Y =M™ ({21, ..., :})

L
+ AT MITE{ 2 (1

=1

Y =MI (R ) ®

The language variation is modeled using a basis represen-
tation (Equation 1). The language mean tower, M"™", sets
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up the origin of the language space and each language basis
tower, M;*"¢, learns one potential direction of variation away
from the origin. Using the basis representation distinguishes
our approach from existing ones [16, 17] that adopt a set of
language-dependent layers with language-common hidden lay-
ers. For each tower in our model, there is no theoretical model
structure constraint. Each of them could have its own struc-
ture. However, in this paper, the same tower structure as the
mean tower (Figure 1) is used for all the language basis towers.
Specifically, within each tower, the input feature vector is first
passed through a ReLU projection layer, which transforms the
usually sparse input vector into a dense representation that is
more suitable for the following neural network layers [4]. After
that, 3 LSTM layers are used to model the complex mapping
from linguistic features to vocoder parameters. With the acti-
vations generated from each of the towers, a summation of the
mean tower with a weight of 1.0 and the weighted combination
of the language basis towers with weights from the language
code vector A produces the intermediate language dependent
hidden activation h{"’.

The language code vector (Figure 1), A™ | locates the lan-
guage v in the L dimensional space and converts the universal
input linguistic feature vector «+ to language dependent hidden
activations hg"). To find a good set of bases, eigen analysis is
commonly adopted in conventional basis decomposition meth-
ods to extract independent directions [18]. However, as the basis
models are stacks of neural network layers, it is challenging to
conduct eigen analysis while maintaining the modeling function-
ality. Therefore, a data-driven approach to learn bases directly
from training is used. With the basis decomposition, informa-
tion about each language is encoded in an L dimensional vector
A which is usually very small compared to the number of
parameters in the bases. Adding a new language requires sim-
ply learning only L numbers. This is preferable when we have
very limited data. However, when we gradually accumulate an
adequate amount of training data, updating only the basis may
limit the adaptation capability. The mean tower of the MLMS
system is hence also adapted to shift the language space towards
the target language when a reasonable amount of data for the
target language is available, which is similar to adding a new
tree in [7].

The speaker variation is modeled through speaker dependent
output layers. Given a speaker ID s, the MLMS system will
retrieve the corresponding output layer for that speaker and use
it for converting the language dependent hidden activation hgu)
to the corresponding output vocoder parameters for the specific
language-speaker pair (u, s). Similarly, the basis decomposition
approach could also be adopted for speaker factorization [19].
However, in consideration of the relatively small number of
parameters in the RNN output layer, where the estimation is
usually robust with a proper amount of data, factor dependent
layers are chosen for this case. Moreover, adapting the whole
output layer gives more flexibility compared to adapting only a
few basis coefficients in modeling the variation across speakers.

During training, the whole system is randomly initialized
and jointly trained to minimize the mean square error between
the predicted and target vocoder parameters. For a language and
speaker pair (u, s), the mean tower M™**, all the language basis
towers M}“g, the corresponding language code vector A
and the specific speaker dependent RNN output layer M
will be updated. The other language code vectors and speaker
dependent RNN output layers will remain unchanged unless the
corresponding data samples are provided. For the estimation



of language basis and language code vector, we could do an
iterative estimation; however, in this paper, a direct optimization
without explicitly scheduling the estimation order was sufficient.

3. Experimental Details

The multilingual speech database used in this paper was con-
structed by simply pooling data from different languages for
existing single language, single speaker TTS systems. Six train-
ing languages were used: North American (US) English, British
(UK) English, French, Italian, German and Spanish. There was
only one female professional speaker in each language, except
for US English and UK English, where one additional male pro-
fessional speaker’s data existed so these were added also to bring
more speaker variation during training. Two testing languages,
Polish and Brazilian (BR) Portuguese with one single female
professional speaker each, were used as limited resource lan-
guage adaptation targets. Detailed information about the data is
tabulated in Table 1.

Stage | Language | Speaker | Train | Dev
. female 35,493
US English male 7,652
. female 21,403
Training UK English ale 3.587
French female 29,924 100
Italian female 29,897
German female 24,535
Spanish female 19,872
Testing Polish female 900
BR Portuguese | female 900

Table 1: Number of utterances used in each language for training
and development.

From the speech data and its associated transcriptions,
phonetic alignments were automatically generated using an
HMM-based aligner, which was trained in a bootstrap manner.
Phoneme-level linguistic features for each language were pooled
together to form a universal phoneme-level linguistic feature set
(e.g. phoneme identities, stress marks, the number of syllables
in a word, position of the current syllable in a phrase). Then the
universal phoneme-level linguistic features, 3 numerical features
for coarse-coded position of the current frame in the current
phoneme and 1 numerical feature for duration of the current seg-
ment were used to form frame-level linguistic features. Detailed
frontend processing could be found in [1, 5].

The speech analysis conditions were similar to those used for
Nitech-HTS 2005 [20] system. The speech data was downsam-
pled from 48kHz to 22.05kHz, then 40 mel-cepstral coefficients
[21], logarithmic fundamental frequency (log Fy) values, and
7-band aperiodicity [20] were extracted every 5 ms. The out-
put features of the LSTM-based MLMS acoustic model were
vocoder parameters consisting of 40 mel-cepstral coefficients,
log Fy value, and 7 band aperiodicities. To model log Fp se-
quences, the continuous Fy with explicit voicing modeling ap-
proach [22] was used; voiced/unvoiced binary value was added
to the output features and log F{ values in unvoiced frames were
interpolated. Benefiting from LSTM’s long-term dependency
modeling capability and RNN output layer’s smoothing effect,
no dynamic features were used.

Both the input and output features were normalized to have
zero-mean and unit-variance. All the model weight parameters
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were randomly initialized (no pretraining was performed) and
then updated to minimize the mean squared error between the
target and predicted output features. A distributed CPU im-
plementation of mini-batch ASGD-based [23] truncated back
propagation through time (BPTT) [24] algorithm was used. The
same training configuration used for building single-language
single-speaker systems [5] was adopted without additional tun-
ning for this new structure. Training was continued until the
mean squared error over the development set converged.

At the synthesis stage, vocoder parameters were predicted
from linguistic features using the trained networks and passed
to the latter vocoding step. Spectral enhancement based on
post-filtering in the cepstral domain was applied to improve the
naturalness of the synthesized speech. Natural speech durations
were used in this study. From the vocoder parameters, speech
waveforms were synthesized using the Vocaine vocoder [15].

To subjectively evaluate the performance of the systems,
preference tests were conducted. 100 utterances not included in
the training data were used for evaluation. For each language,
only the native speakers using headphones were allowed to take
part in the listening tests. One subject could evaluate a maximum
of 30 pairs and each pair was evaluated by eight subjects in the
preference test. Subjects were asked to choose the preferred
sample from each pair of speech samples.

4. Results
4.1. Building a Multi-Language Multi-Speaker System

This experiment aims to justify the capability of the proposed
LSTM-based MLMS system in modeling the large variations
across languages and speakers. Six basis towers and one mean
tower were used to model the language space. In each tower,
the input linguistic feature vector was first projected down to a
256 dimensional dense representation by a ReL.U layer. After
that, 3 LSTM layers were used to model the long-term temporal
dependencies. Each LSTM had 256 memory cells and an output
projection layer which condensed the 256 dimensional LSTM
output vector into a lower dimensionality of 128. The whole
system output 49 dimensional vocoder parameter vectors. The
speaker dependent RNN output layer hence contained a forward
matrix with the dimensionality of 128 x 49, a recurrent matrix of
the size 49 x 49 and a 49 dimensional bias vector. For compari-
son purpose, we also trained the single language single speaker
LSTM baseline models, one for each language-speaker pair.
These baseline models have the same model structure, namely
one 256-dimensional ReLU projection layer, three LSTMs each
with 256 memory cells and a 128-dimension output projection,
and one RNN output layer with 49-dimension output.

During training, all the towers and speaker dependent RNN
layers were randomly initialized. For the code vector of each
language, three different setups were tried: 1) rand - randomly
initialized and updated in training; 2) 1-hot (init): initial-
ized with the 1-hot vector representation for each language and
updated in training; 3) 1-hot (fixed): initialized with 1-hot
vectors and kept constant. As there are only two languages hav-
ing male speakers and they also have much less data compared to
female speakers, evaluations were only conducted on the female
speaker for each language. From the final mean square error on
the development set of each language shown in Figure 2, the
simple random initialization worked the best among the three dif-
ferent language code vector training strategies. Hence, only the
model trained with randomly initialized language code vectors
was used for the following investigations.



32.0
I baseline
31.0 M rand
.
S = 1-hot(init)
0 30.0 WM 1-hot(fixed)
(V)
S 290
o
(%]
S 28.0
()
=
27.0
26.0

US English UK English French Italian German Spanish
Figure 2: Mean square error on dev set of baseline single lan-
guage, single speaker systems and systems using three different

language code training strategies respectively.

In Figure 2, the proposed MLMS system has slightly worse
objective scores compared to the single language, single speaker
baseline systems. Subjective preference listening tests were also
conducted to further justify the proposed MLMS system. The
results are tabulated in Table 2. In the preference test, the single
language, single speaker baseline models were referred to as
system A, while the proposed LSTM-based MLMS system was
referred to as system B. Except for UK English, building a single
system from multiple languages and speakers using the proposed
LSTM-based MLMS achieved the same naturalness as building
a set of models one per language and speaker pair.

Language Subjective Preference (%)
A B Neutral

US English 11.5 11.0 77.5
UK English || 259 138 60.4
French 12.6 139 73.5
ITtalian 13.1 175 69.4
German 183 18.3 63.5
Spanish 139 11.6 74.5

Table 2: Subjective preference scores (%) on training languages
between the baseline single language single speaker LSTM
systems () and the proposed LSTM-based MLMS system (B).
The systems which achieved significantly better preference at
p < 0.01 level are in the bold font.

4.2. Adaptation to New Languages

In this set of experiments, the effectiveness of adapting the pro-
posed LSTM-based MLMS system to new languages, namely,
Polish and BR Portuguese, were verified with limited training
data. To adapt to the target speaker, we needed to update the
RNN output layer; while for the language adaptation, we could
either only update the language code or the mean tower, or up-
date them alternatively, or jointly. We hence experimented with
the following set of experiments:

v1 :update only language code A,

v2 : update language code A‘*) and mean tower M™* jointly;
v3 : start from v1, update mean tower M™*" alone;

v4 : start from v3, joint update language code A™ and mean

tower M™*",

The development set mean square error of the above systems
and baseline models are depicted in Figure 3. Other than v1,
which has very constrained adaptability, all the other systems
yield lower mean square error than directly building a system
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Figure 3: Mean square error on dev set of different systems
adapting to Polish and BR Portuguese with limited data.

from the limited data. It clearly suggests the benefit of using the
proposed LSTM-based MLMS system for new languages with
limited training data (900 utterances per language, cf. Table 1).
For Polish, v3 has the lowest mean square error; while for BR
Portuguese, v2 works slightly better than v 3.

To further verify the gains, subjective preference tests among
the baseline system, v2 and v3 were conducted. The results are
summarized in Table 3. For Polish, v3 was statistically signifi-
cant better than the baseline (p < 0.01). For BR Portuguese, v2
and v3 were both better than the baseline (p < 0.01) and there
was no statistically significant difference between them.

Language Subjective Preference (%)
guag A v2 v3 Neutral

31.1 383 - 30.6

Polish 30.0 - 41.5 28.5

- 33.1 398 27.1

144 234 - 62.3

BR Portuguese || 13.3 - 25.6 61.1

- 104 104 79.3

Table 3: Subjective preference scores (%) for adaptation to new
languages with limited data among the baseline single language,
single speaker LSTM systems (A) and the two adaptation strate-
gies for the proposed LSTM-based MLMS system (v2 and v 3).
The systems which achieved significantly better preference at
p < 0.01 level are in the bold font.

5. Conclusions

This paper presented an LSTM-based multi-language multi-
speaker (MLMS) statistical parametric speech synthesis system
to utilize inhomogeneous data. It models the language variation
through cluster adaptive training where language basis towers
and language code vectors are jointly learned during training.
The speaker variation is captured through speaker dependent
RNN output layers. Experimental results on six languages have
shown that the proposed MLMS system achieves similar per-
formance on the training languages and speakers, compared to
conventional language and speaker dependent models. Moreover,
adaptation of the LSTM-based MLMS system to new languages
with limited training data yields much better performance in both
objective and subjective evaluations than building models from
scratch. Future work includes exploring other adaptation tech-
niques such as speaker code and better optimization techniques
especially when training with more languages which we have
found to be more challenging.
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