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Abstract 
There is a long debate on the relative importance of spectral and 
temporal cues in speech perception theories. On the one hand, 
the highly-intelligible sine-wave speech (SWS) has been 
viewed as a representation of the global spectral structure of the 
speech signal. On the other hand, there is accumulating 
evidence showing that the temporal aspects of speech without 
spectral details provide sufficient speech understanding. The 
present study explored whether the temporal envelopes 
imbedded in the SWS contribute to its intelligibility. In the 
experiments, both SWS and natural speech signals were 
processed with noise and tone vocoders to remove the spectral 
details but to preserve the temporal envelopes. Twenty-two 
normal-hearing, native English-speaking adult listeners 
participated in sentence recognition tasks. Speech recognition 
performance of vocoder-processed SWS was slightly inferior to 
that of vocoder-processed natural speech but both reached 
plateau performance at 6-8 channels. Acoustic analysis further 
indicated that the temporal envelopes of the SWS were almost 
identical to those of the natural speech, with a mean correlation 
coefficient r = 0.949 across all sentences. The results provide 
strong evidence that the SWS represents both spectral and 
temporal structures of the speech and that the temporal 
envelopes imbedded in SWS carry important information for 
speech recognition.  
Index Terms: speech recognition, vocoder, temporal envelope, 
sine-wave speech 

1. Introduction 
Despite the enormous progress that has occurred in perceptual, 
neurophysiological and imaging research on speech in the last 
three decades, our understanding of the mechanisms that 
underlie both the intelligibility of speech and the perceptual 
organization of speech are still fragmentary. In particular, a 
coherent account of intelligibility of both sine-wave speech 
(SWS) and vocoded speech is not yet available. SWS consists 
of a number of sinusoids, typically three that track the 
frequencies of the first three formants of speech [1]. It lacks 
broadband formant structure, fundamental frequency (F0), or 
any clear distinction between periodic and aperiodic excitation 
that are traditionally believed to be important for speech 
perception. And yet, normal-hearing listeners can understand 
SWS from 60% to nearly 100% depending on the sentence 
materials [2-4].  

The nature of the phonetic information represented in 
SWS is not clear [5]. The cues for the perception of SWS have 
been thought to be predominately spectral and have been given 
labels such as “global spectral structure” or “spectral skeleton” 
[3, 6, 7]. On the other hand, a recent report has suggested that 
both SWS and vocoded SWS contain more-or-less identical 

information about spectrotemporal dynamics of speech [8]. 
Such an observation was based on a vocoder processing with 33 
channels. When we examine the time waveforms and 
spectrograms of the natural speech and SWS and 4-channel 
noise- and tone-vocoder processed signals (Fig. 1), for example, 
the spectral dynamics are very different among the original 
speech signal (either natural or SWS) and the noise- and tone-
vocoder processed signals (column-wise comparisons in Fig. 1). 
What is striking is that the temporal features of the SWS signals 
(either original or vocoder processed) bear noteworthy 
resemblance to those of the natural speech (row-wise 
comparisons in Fig. 1). Therefore, it is important to quantify the 
amount of temporal envelope information in SWS.   

From the first “talking machine” (aka vocoder) invented 
by Dudley [9] to the multichannel cochlear implants [10], there 
is mounting evidence that speech information can be conveyed 
in the temporal envelopes of the speech signal [11]. Certain 
features of consonants are well preserved within a single band 
(most strongly, manner of articulation) but others are very weak 
(place of articulation) [12, 13]. The spectral resolution required 
for speech recognition has been studied using a spectral 
smearing technique [14, 15]. It has been found that a reduced 
spectral resolution has a minimal effect on speech recognition 
in quiet, even for smearing that simulates auditory filters six 
times broader than in normal hearing [16, 17]. These results 
suggest that approximately five bands of spectral information 
would be sufficient for speech recognition in quiet. Using the 
vocoder technique, research has shown that normal-hearing 
listeners achieve good speech perception with the temporal 
envelopes carried by 4–8 sinusoids or narrow bands of noise 
depending on the speech materials [11, 18-23].  

The aims of this study are to determine the amount of 
temporal envelope information in SWS and to explore whether 
the temporal envelope information imbedded in the SWS 
contributes to its intelligibility. The natural speech and the SWS 
signals were subject to vocoder processing with 1 to 8 channels 
and the processed sentences were presented to normal-hearing 
listeners for recognition. Acoustical analysis was performed to 
determine the similarities in temporal envelope between natural 
speech and SWS.  

2. Method 

2.1. Subjects 
A total of 22 normal-hearing adults (15 females and 7 males) 
were recruited from the Ohio University student population. 
They were between 18 and 33 years of age. Normal-hearing 
status was determined based on pure-tone hearing threshold < 
20 dB HL at octave frequencies between 250 a nd 8,000 Hz. 
Subjects were native speakers of English and had no prior 
experience with the City University of New York (CUNY) 
sentences [24], vocoder-processed speech, or SWS.  
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2.2. Stimuli 
Speech materials used in the experiments were CUNY 
sentences recorded at a 44.1-kHz sampling rate from a m ale 
talker whose mean voice F0 was 133 Hz [24]. The SWS stimuli 
were generated using a PRAAT routine [25] that extracted the 
center frequency of the formants of the original CUNY 
sentences based on Linear Predictor Coefficient (LPC) analysis. 
The extracted formants were then replaced with sinusoidal 
replicas. The amplitude and frequency of the center frequencies 
were measured every 10 ms of the speech signal. When there 
were no formants in the original speech, for example, prior to 
the release of a voiceless plosive or affricate, a simple linear 
interpolation was used to create the sinusoids in SWS. The sine-
wave sentences as well as the original sentence materials were 
subjected to the vocoder signal processing as described below.  

The noise-excited vocoder [11, 19, 21, 26] or the tone-
excited vocoder [27] was realized using custom MATLAB 
(MathWorks, Natick, MA) software. The speech signals within 
the frequency range of 250 t o 4,600 Hz were first passed 
through a bank of analysis filters (third-order elliptic bandpass 
filters) that varied from one to eight (1, 2, 3, 4, 6, and 8) in the 
number of channels. The Greenwood formula [28] was used to 
divide the frequency bands based on equal distance on the 
basilar membrane of the cochlea. The temporal envelope was 
extracted from each analysis band by half-wave rectification 
and low-pass filtering (second-order Butterworth filter). The 
cutoff frequency of the low-pass filter used in the noise-excited 
vocoder was set at 160 Hz whereas that used in the tone-excited 
vocoder was set at 40 H z in order to reduce the amount of 
sidebands produced by amplitude modulation. In the noise-
excited vocoder, a white noise that had passed through each of 
the same analysis filters was modulated by the temporal 
envelope of the corresponding band. In the tone-excited 
vocoder, a sinusoid at the center frequency of each band was 
modulated by the temporal envelope of the corresponding band. 

Lastly, the modulated noise bands or the sinusoids were 
summed and stored in the computer for later presentations.   

2.3. Procedures 
The speech signals were presented binaurally through a supra-
aural headphone (Sennheiser, HD 265) in a sound attenuating 
booth (IAC, New York). Subjects were able to adjust the 
intensity of the signal to the most comfortable level of their 
choice. A custom MATLAB program was used to present the 
acoustic stimuli and to record subjects’ responses in the 
graphical user interface. Subjects were instructed to type the 
sentence they had heard in a text box on the computer screen. 
Subjects were allowed to listen to each sentence as many times 
as they felt necessary to best understand the sentence. On 
average, a stimulus was repeated 4~5 times.  

The 22 subjects were randomly divided into two groups (11 
each). One group participated in the noise vocoder experiment 
and the other tone vocoder experiment. For both experiments, 
there were six channel conditions (1, 2, 3, 4, 6, and 8 channels) 
for the two types of speech materials (vocoder-processed 
natural speech and vocoder-processed SWS). Each condition 
was assigned randomly with one CUNY sentence list that 
consisted of 12 sentences so that no sentence was used more 
than once. In total, 144 typed responses were collected from 
each subject (12 sentences × 6 channel conditions × 2 speech 
types). All subjects were trained with the vocoder-processed 
natural speech and SWS to familiarize themselves with the test 
materials. Note that the training used different CUNY sentence 
lists from the ones used in the test. The training session used 18 
vocoder-processed natural speech sentences and 18 vocoder-
processed SWS sentences (6 sentences for each of the following 
channel conditions: 2, 4, and 8 channels). Feedback was 
provided for training but not for the test. The order of the 
conditions was fully randomized to reduce any order effects. 
Subjects took approximately two hours to complete the 
experiment. 

Figure 1: Examples of waveforms and spectrograms of natural speech (upper left), sine-wave speech (lower leftt), 4-channel noise-
vocoder processed natural speech (upper middle), 4-channel noise-vocoder processed sine-wave speech (lower middle), 4-channel 
tone-vocoder processed natural speech (upper right),  and 4-channel tone-vocoder processed sine-wave speech (lower right). 
Spectrograms are in narrowband format with colors showing energy associated with particular time and frequency. The sentence 
is CUNY Sentence #4 of List #6, “Put on your raincoat,” spoken by a male talker. 
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2.4. Acoustic analysis of the temporal envelope 
Acoustic analysis based on the correlational approach [29] 

was performed to examine the correlation between temporal 
envelopes of the naturally spoken sentences and sine-wave 
replicas of the sentences. For each of the 144 sentences used in 
the present study, the correlation coefficients across all channels 
in all channel conditions were averaged to represent the 
correlation of that sentence. We also computed the averaged 
correlation coefficients between the natural speech and the 
SWS when the sentences were different sentences. The longer 
sentence of the two was truncated to match the length of the 
shorter one. There were 10,296 possible permutations of all the 
144 sentences.   
 

3. Results 

3.1. Sentence recognition of noise- and tone-vocoder 
processed SWS 
Figure 2 ( upper left) shows sentence recognition scores for 
noise-vocoded natural speech and SWS materials. The scores 
improved as a function of number of channels (i.e., noise 
bands). Individual variation under both conditions was small as 
indicated by the standard deviations. Under the conditions of 2, 
3, 4, and 6 channels, the mean scores differed by 11.2 
percentage points on average (pairwise comparisons after 
Bonferroni correction, p < 0.0083). A logistic regression as in 
[17] was used to fit the noise-vocoded natural speech 
recognition data (r2 =0.994) and the noise-vocoded SWS 
recognition data (r2 = 0.990) (Fig. 2, lower left). The two sets of 
functions were close with those of the noise-vocoded SWS data 
being shifted to the right slightly. On the logistic regression 
curves for the group mean data, the number of channels required 
to achieve 50% correct recognition was 2.0 and 2.6 for noise-
vocoded natural speech and noise-vocoded SWS, respectively 
and the difference was statistically significant (paired t test, 
t(10) = -5.64, p = 0.0002). The regression slopes at 20-80% 
correct recognition were 40.4 and 26.3 percentage 
points/channel, respectively and the difference was statistically 
significant (paired t test, t(10) = 5. 47, p = 0.0003).  

In order to eliminate the potential effects of the inherent 
fluctuations in noise on the temporal envelope [30], we used 
tone vocoder processing (Fig. 1, right panels) in this part of the 
experiment. Here, the three time-varying sinusoids in the SWS 
were replaced by a number of constant-frequency sinusoids. As 
in the noise vocoder, the temporal envelopes of the constant-
frequency sinusoids were derived from the frequency bands in 
the original signals with the center frequencies equal to the 
sinusoids. Sentence recognition data were obtained with both 
tone-vocoded natural speech and tone-vocoded SWS from a 
different group of 11 normal-hearing, native English-speaking 
subjects. Figure 2 (upper right) shows the scores for tone-
vocoded sentence recognition. Under the conditions of 2, 3, 4, 
and 6 channels, the mean scores differed by 19.2 percentage 
points on average (pairwise comparisons after Bonferroni 
correction, all p < 0.05). Again, a logistic regression was used 
to fit the tone-vocoded natural speech data (r2 =0.978) and the 
tone-vocoded SWS data (r2 = 0.994) (Fig. 2, lower right). For 
the  group  mean  data,  the  number  of  channels   required  to  

 
Figure 2: Upper panel: Mean speech recognition performance 
of noise vocoder processed speech as a function of number of 
channels. The natural speech and vocoder-processed sine-wave 
speech (SWS) are represented by blue and red line, respectively. 
The error bars represent SDs. Lower panel: Logistic regression 
of the individual recognition data (dashed lines) and the group 
mean recognition data (thick solid lines). 
 
achieve 50% correct recognition was 2.5 and 3.2 for tone-
vocoded natural speech and tone-vocoded SWS, respectively 
and the difference was statistically significant (paired t test, 
t(10) = -7.33, p = 0.00003). The regression slopes at 20-80% 
correct recognition were 30.8 and 22.4 percentage 
points/channel, respectively and the difference was also 
statistically significant (paired t test, t(10) = 5.14, p = 0.0004). 

The speech recognition performance as a function of 
number of channels with the tone vocoder (Fig. 2 right) showed 
a similar trend to that with the noise vocoder (Fig. 2, left). 
However, the performance with the tone vocoder was lower 
than that with the noise vocoder for both natural speech and 
SWS. The differences in number of channels to reach 50% 
correct and the differences in the regression slopes at 20-80% 
correct between the noise and tone vocoders for either natural 
speech or SWS were all statistically significant (t test, all p < 
0.05). 

3.2. Acoustic analysis of the temporal envelope in 
natural and SWS signals 
As shown in Fig. 1 (middle and left panels), the waveforms and 
spectrograms of vocoder-processed natural speech and SWS 
appear to resemble each other. Figure 3a shows the temporal 
envelopes (lowpass filtered at 40 Hz) of the same sentence that 
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Figure 3: Similarity of temporal envelope of the natural speech 
and the sine-wave replica. (a). Temporal envelopes of the 
example sentence, “Put on your raincoat”, extracted from a 4-
channel vocoder. Channels 1 through 4 were the frequency 
bands from low to high. The normalized temporal envelopes of 
the natural speech and SWS are represented by blue and red 
lines, respectively. The envelopes were extracted by a half-wave 
rectification and a lowpass filtering at 40 Hz. The correlation 
coefficients (r) between the two envelopes were then computed. 
The values were shown in the upper right corners. (b). 
Distribution of the correlation coefficients from the correlation 
analysis. The histogram plotted in green shows the distribution 
of the correlation coefficients between the natural speech and 
the SWS when the sentence was the same sentence (N= 144). 
The histogram plotted in black shows the distribution of the 
correlation coefficients between the natural speech and the 
SWS when the sentences were different sentences (N= 10,296). 
 
was plotted in Fig. 1, as an example. In each of the four 
channels, the envelopes of the two types of speech (i.e., natural 
and SWS) were highly correlated. Averaged correlation 
coefficients (r) across all channels represented the resemblance 
of the temporal envelopes. In this example, the averaged r value 
was 0.955. The mean r value across all the 144 CUNY sentences 
that were used in the present study under different channel 
conditions was 0.949 (SD = 0.017). On the other hand, when 
the correlation was computed for natural and SWS stimuli that 
were of two different sentences (N= 10,296), the overall mean 
r value reduced to 0.0472 (SD = 0.148) (Fig. 3b). 

 

4. Discussion and Summary 
SWS and vocoder speech adopt distinct signal processing (Fig. 
1) and yet both are highly intelligible. Contemporary speech 
perception theories have not attempted to reconcile the different 
mechanisms of speech perception of the two types of speech. 
Some researchers have categorized the SWS and vocoder 
speech as containing global spectral structure and global 
amplitude structure of speech, respectively [3, 6, 7]. Results 
from the present study show that after the spectral details of the 
SWS are removed during vocoder processing, speech 
recognition using only the temporal envelopes of the sinusoids 
yields intelligibility slightly inferior to that of the vocoder-
processed natural speech (Fig. 2). For both vocoder-processed 
natural speech and vocoder-processed SWS, sentence 
recognition reached plateau performance at 6 to 8 channels.  

The two different types of vocoder (i.e., tone and noise 
vocoders) used in the present study produce a similar sentence-
recognition performance between natural speech and SWS (Fig. 
2). The differences in recognition performance around 3 or 4 
channels between noise and tone vocoders are predictable 
because the tone vocoder in the present study was implemented 
with a lower envelope cutoff (40 Hz) whereas that of the noise 
vocoder was much higher (160 Hz). Such minor differences in 
sentence intelligibility between the two types of vocoder using 
different envelope cutoffs were reported by [30]. It is interesting 
to note though, that in the tone vocoder conditions, 
approximately 50% sentence recognition was achieved when 
the time-varied frequency contours of the 3 sinusoids of the 
SWS were replaced by 3 c onstant-frequency sinusoids. This 
result further confirms that the temporal envelope contained in 
the SWS can provide sentence intelligibility. 

The acoustic analysis shows that the temporal envelopes of 
the SWS closely resemble the envelopes of the corresponding 
frequency bands of the natural speech (Fig. 3). The mean 
correlation coefficient between the envelopes of the natural 
speech and SWS of the CUNY sentences was approximately 
0.95. Such results indicate that the temporal envelope contained 
in the SWS might contribute to its intelligibility. Thus, the 
present study provides evidence to support a unified 
explanation of the mechanisms underlying the perception of 
sine-wave and vocoder speech. That is, temporal envelope 
information conveyed in a small number of frequency channels 
provides good sentence recognition for either natural speech or 
SWS.  

In summary, we have shown that SWS contains both 
spectral and temporal structures for speech recognition. The 
temporal structure of SWS closely resembles that of the natural 
speech. While it is conceivable that listeners use both spectral 
and temporal cues for speech recognition, further research will 
be needed to evaluate the perceptual weights of the two cues in 
SWS recognition.  

5. Acknowledgements 
The author is grateful to Natalie Bevilacqua, Heather Gradisek, 
Marisol Gliatas, Emily Hahn, Bethany Mendez, Alexa Patton, 
and Ning Zhou for their technical and editorial assistance. 
  

1685



 

5. References 
[1] R. E. Remez, P.E. Rubin, D.B. Pisoni, and T.D. Carrell, “Speech 

perception without traditional speech cues,” Science, vol. 212, pp. 
947-949, 1981. 

[2] Y. M. Feng, L. Xu, N. Zhou, G. Yang, and S. K. Yin, “Sine-wave 
speech recognition in a t onal language,” The Journal of the 
Acoustical Society of America, vol. 131, pp. EL133-138, 2012. 

[3] S. Nittrouer and J. H. Lowenstein, “Learning to perceptually 
organize speech signals in native fashion,” The Journal of the 
Acoustical Society of America, vol. 127, pp. 1624-1635, 2010. 

[4] R. E. Remez, P. E. Rubin, S. M. Berns, J. S. Pardo, and J. M. Lang, 
“The perceptual organization of speech,” Psychological Review, 
vol. 101, pp. 129-156, 1994. 

[5] J. M. Hillenbrand, M. J. Clark, and C. A. Baer, “Perception of 
sinewave vowels,” The Journal of the Acoustical Society of 
America, vol. 129, pp. 3991-4000, 2011. 

[6] S. Nittrouer, J. H. Lowenstein, and R. R. Packer, “Children 
discover the spectral skeletons in their native language before the 
amplitude envelopes,” Journal of Experimental Psychology: 
Human Perception and Performance, vol. 35, pp. 1245-1253, 
2009. 

[7] S. Nittrouer, J. Kuess, and J. H. Lowenstein, “Speech perception 
of sine-wave signals by children with cochlear implants,” The 
Journal of the Acoustical Society of America, vol. 137, pp. 2811-
2822, 2015. 

[8] S. Rosen, and S. N. C. Hui, “Sine-wave and noise-vocoded sine-
wave speech in a tone language: Acoustic details matter,” The 
Journal of the Acoustical Society of America, vol. 138, pp. 3698-
3702, 2015. 

[9] H. Dudley, “The vocoder,” Bell Labs Rec, vol. 18, pp. 122-126, 
1939. 

[10] G. Clark, Cochlear Implants: Fundamentals and Applications. 
New York: Springer, 2003. 

[11] R. V. Shannon, F. G. Zeng, V. Kamath, J. Wygonski, and M. 
Ekelid, “Speech recognition with primarily temporal cues,” 
Science, vol. 270, pp. 303-304, 1995. 

[12] S. Rosen, “Temporal information in speech: acoustic, auditory 
and linguistic aspects,” Philosophical Transactions of the Royal 
Society B, vol. 336, pp. 367-373, 1992. 

[13] D. J. Van Tasell, S. D. Soli, V. M. Kirby, and G. P. Widin, 
“Speech waveform envelope cues for consonant recognition,” The 
Journal of the Acoustical Society of America, vol. 82, pp. 1152-
1161, 1987. 

[14] A. Boothroyd, B. Mulhearn, J. Gong, and J. Ostroff “Effects of 
spectral smearing on phoneme and word recognition,” The 
Journal of the Acoustical Society of America, vol. 100, pp. 1807-
1818, 1996. 

[15] E. Villchur, “Electronic models to simulate the effect of sensory 
distortions on speech perception by the deaf,” The Journal of the 
Acoustical Society of America, vol. 62, pp. 665-674, 1977. 

[16] T. Baer and B. C. Moore, “Effects of spectral smearing on the 
intelligibility of sentences in noise,” The Journal of the Acoustical 
Society of America, vol. 94, pp. 1229-1241, 1993. 

[17] T. Baer and B. C. Moore, “Effects of spectral smearing on the 
intelligibility of sentences in the presence of interfering speech,” 
The Journal of the Acoustical Society of America, vol. 95, pp. 
2277-2280, 1994. 

[18] P. C. Loizou, M. Dorman, and Z. Tu, “The number of channels 
needed to understand speech,” The Journal of the Acoustical 
Society of America, vol. 106, pp. 2097-2103, 1999. 

[19] L. Xu, Y. Tsai, and B. E. Pfingst, “Features of stimulation 
affecting tonal-speech perception: Implications for cochlear 
prostheses,” The Journal of the Acoustical Society of America, 
vol. 112, no. 1, pp. 247-258, 2002.  

[20] R. V. Shannon, Q. J. Fu, and J. Galvin 3rd, “The number of spectral 
channels required for speech recognition depends on the difficulty 
of the listening situation,”Acta Oto-laryngologica Supplementum, 
pp. 50-54, 2004. 

[21] L. Xu, C. S. Thompson, and B. E. Pfingst, “Relative contributions 
of spectral and temporal cues for phoneme recognition,” The 
Journal of the Acoustical Society of America, vol. 117, pp. 3255-
3267, 2005. 

[22] F. G. Zeng, K. Nie, G. S. Stickney, Y. Y. Kong, M. Vongphoe, A.  
Bhargave, C. Wei, and K. Cao, “Speech recognition with 
amplitude and frequency modulations,” Proceedings of National 
Academy of Sciences, vol. 102, pp. 2293-2298, 2005. 

[23] B. J. Kim, S.-A. Chang, J. Yang, S. H. Oh, and L. Xu, “Relative 
contributions of spectral and temporal cues to Korean phoneme 
recognition,” PLoS ONE, vol. 10, no. 7, pp. e0131807, 2015.  

[24] A. Boothroyd, L. Hanin, and T. Hnath, “Sentence test of speech 
perception: Reliability, set equivalence and short term learning,” 
in, Vol. New York, Speech and Hearing Sciences Research 
Center, City University of New York, 1985. 

[25] C. Darwin, “Sine-wave speech produced from them automatically 
using a script for the Praat program,” 
http://www.lifesci.sussex.ac.uk/home/Charles_Darwin/SWS 
(Last viewed March 15, 2016.)   

[26] L. Xu, and B. E. Pfingst, “Spectral and temporal cues for speech 
recognition: implications for auditory prostheses,” Hearing 
Research, vol. 242, pp. 132-140, 2008. 

[27] M. F. Dorman, P. C. Loizou, and D. Rainey, “Speech 
intelligibility as a function of the number of channels of 
stimulation for signal processors using sine-wave and noise-band 
outputs,” The Journal of the Acoustical Society of America, vol. 
102, pp. 2403-2411, 1997. 

[28] D. D. Greenwood, “A cochlear frequency-position function for 
several species--29 years later,” The Journal of the Acoustical 
Society of America, vol. 87, pp. 2592-2605, 1990. 

[29] F. G. Zeng, K. Nie, S. Liu, G. Stickney, E. Del Rio, Y. Y. Kong, 
and H. Chen, “The dichotomy in auditory perception between 
temporal envelope and fine structure cues,” The Journal of the 
Acoustical Society of America, vol. 116, pp. 1351-1354, 2004. 

[30] P. Souza, and S. Rosen, “Effects of envelope bandwidth on the 
intelligibility of sine- and noise-vocoded speech,” The Journal of 
the Acoustical Society of America, vol. 126, pp. 792-805, 2009. 
 

1686


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Li Xu
	----------



