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Abstract
Automatic speech recognition (ASR) enables very intuitive
human-machine interaction. However, signal degradations due
to reverberation or noise reduce the accuracy of audio-based
recognition. The introduction of a second signal stream that
is not affected by degradations in the audio domain (e.g., a
video stream) increases the robustness of ASR against degra-
dations in the original domain. Here, depending on the sig-
nal quality of audio and video at each point in time, a dynamic
weighting of both streams can optimize the recognition perfor-
mance. In this work, we introduce a strategy for estimating opti-
mal weights for the audio and video streams in turbo-decoding-
based ASR using a discriminative cost function. The results
show that turbo decoding with this maximally discriminative
dynamic weighting of information yields higher recognition ac-
curacy than turbo-decoding-based recognition with fixed stream
weights or optimally dynamically weighted audiovisual decod-
ing using coupled hidden Markov models.

Index Terms: Audiovisual speech recognition, Turbo decod-
ing, Stream weighting

1. Introduction
Automatic speech recognition (ASR) is essential in situations
in which a hands-free interaction between a human and a ma-
chine is desired. Due to the many technical advances that were
made in the last few decades, modern ASR systems have be-
come quite accurate and reliable when operated in favorable en-
vironmental conditions. The performance drops considerably,
however, when noise and/or reverberation degrade the incom-
ing signal. An incorporation of information from a different
(e.g. non-acoustic) modality, which is not affected by the degra-
dations in the original acoustic modality, helps to increase the
noise robustness and the recognition performance. It has been
shown that with a combination of audio and video data it is pos-
sible to increase speech recognition accuracy when compared to
ASR systems that employ audio data streams only (e.g., [1, 2]).
Currently, the main techniques used for the integrated decod-
ing of audio and video streams are coupled HMMs (CHMM,
[3]), turbo-decoding (TD, [4]), and approaches based on deep
learning [5, 6, 7]. In dealing with the integration it is impor-
tant to control the contribution of each stream within the de-
coding procedure in order to ensure an optimal performance.
Fixed stream weights (FSWs) for a given data-set were analyzed
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in [1, 8] and time-adaptive weights (dynamic stream weights,
DSW) were proposed in [9]. In the latter paper, an algorithm
to estimate DSWs for CHMM-based ASR was introduced for
different signal-to-noise ratios (SNR) in the audio stream. Un-
fortunately, the method proposed in [9] for CHMM-based ASR
does not readily carry over to TD-based ASR.

In this contribution, we introduce a new estimation strat-
egy for optimal DSWs for TD-based ASR. We propose to use
the stream weights of audio and video streams to maximize
a discriminative cost function in each time frame and TD-
iteration. This cost function uses the knowledge of the correct
word sequence of the current sentence in form of an oracle path
through the HMM-states as well as theN -best (confusion) paths
which result in wrong word sequences. With these oracle-based
DSWs, estimation algorithms for blind estimation of high qual-
ity DSWs will be developed in the future.

The paper is structured as follows. In Section 2 we intro-
duce the basic concepts of audiovisual ASR with CHMM and
TD and we discuss the estimation of optimal SNR- and noise-
type-dependent fixed stream weights. In Section 3, we describe
the proposed estimation method for dynamic stream weights for
TD. Our experimental setup is presented in Section 4. The ac-
curacy of ASR systems with and without the proposed method
is evaluated in Section 5.

2. Background
It is helpful to briefly review the main concepts behind CHMMs
and TD for audiovisual fusion and to define the associated math-
ematical notation. A broader and more comprehensive intro-
duction to the field of speech recognition with CHMMs and
turbo decoding is found in [10], [11], and [4] for example.

When audiovisual data is used for ASR, a fusion strategy
is required that jointly evaluates data from both modalities. For
this purpose, a comprehensive initial study by Nefian et al. [1]
had found the coupled HMM to be the optimal method among a
range of graphical-model-based approaches. However, in more
recent work, turbo decoding has proven to be even more effec-
tive at integrating both modalities [12]. The two methods are
described in the following two subsections 2.1 and 2.2.

2.1. Coupled HMM Decoding

Coupled HMM decoding is a commonly applied technique to
fuse information from an audio stream with that of a visual
stream. With coupled HMMs it is readily possible to model the
temporal asynchronicities that typically occur between video
and audio data. A more comprehensive discussion of CHMMs
and their advantages can be found in [1] and [2]. The joint au-
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diovisual observation likelihood of a CHMM is computed as

p(oa, ov|qa, qv) = ba(oa|qa)λc · bv(ov|qv)1−λc , (1)

where ba and bv are the individual audio and video observation
likelihoods of the corresponding single-modalitiy observation o
and state q. The term λc weights the contribution of the modal-
ities to the joint likelihood, and may be fixed or varying over
time.
2.2. Turbo Decoding

Originally, turbo decoding has been developed for the purpose
of convolutional error correction and channel decoding in digi-
tal transmission systems [13, 14]. Recently, TD was introduced
into the field of ASR as means to solve the data fusion prob-
lem in multi-modal recognition tasks [15, 4, 16]. In the iterative
process of TD (see Fig. 1), information which is extracted from
state posteriors is exchanged between different decoders. To it-
eratively improve audio and video likelihoods, the observation
likelihoods ba and bv are modified by ga and gv as

b̃a(oa|qa) = ba(oa|qa) · ga(qa)λpλv , (2)

and b̃v(ov|qv) = bv(ov|qv) · gv(qv)λpλa . (3)

In both equations, λp can be interpreted as a constant weighting
exponent, which balances the influence of the prior probability
versus the likelihood of the previous iteration. Exponents λa
and λv can be used to control the weight of the likelihood mod-
ification. We may either chose λa and λv to be fixed for a given
expected SNR value or we may adjust them dynamically over
time according to some type of estimated fidelity criterion.

Using the forward-backward algorithm, in each half-
iteration we obtain new state posteriors γ̃, which contain infor-
mation about the likelihood, the prior probability and the extrin-
sic probability [4]. This extrinsic probability, which is passed
on to the other decoder for the next half-iteration, is computed
for state q at time frame t by removing all excess information,
i.e.

γ̇(qt) ∝
γ̃(qt)

b(ot|qt) · g(qt)
. (4)

For L video states we define γ̇v = [ γ̇v(1) . . . γ̇v(L) ]
T. Anal-

ogously, we define vectors γ̇a, ga, and gv . To transfer the ex-
trinsic probabilities γ̇v and γ̇a from one modality in the other,
we are mapping the γ̇v and γ̇a vectors to the ga and gv vectors
via a linear transformation

ga = Tvaγ̇v, (5)
and gv = Tavγ̇a. (6)

The matrices Tva and Tav are derived from the relationships
between the state spaces for the video and the audio streams
respectively (see [4] for example). In our case, three states
per phoneme are used in the acoustic model and one state per
phoneme in the video model, which, together with the fact
that we associate acoustic and phonetic states according to the
phoneme identity, defines the structure of these matrices.

2.3. Fixed Stream Weights

Fixed stream weights are designed to provide a noise-scenario-
dependent weighting for audio and video data, with a noise sce-
nario being defined by the type and level of noise. The FSWs
are fixed for all signals of the specific noise scenario and over
all possible iterations of decoding. Thus, the FSWs can be ap-
plied when a noise estimation algorithm provides information
about the acoustic scenario.

audio feature sequence
oa

Tva

video feature sequence
ov

gv

γ̇v

γ̇a

ga

Tav

likelihood computation likelihood computation

γ̃a

ba bv

posterior computation posterior computation

Figure 1: Schematic overview of turbo-decoding for audio-
visual ASR. The left column comprises a forward-backward-
algorithm-based audio-only ASR system. For TD, a second
modality (video) is added and extrinsic probabilities γ̇a and γ̇v
are exchanged between decoders. After a predefined number
of iterations, a best path search through the audio posteriors γ̃a
reveals the final best word sequence.

To estimate optimal FSWs, we follow the strategy that is
introduced in [17]. A grid search is performed to estimate opti-
mal weighting coefficients of audio and video data in different
noise conditions. For the computation of the joint audiovisual
state likelihood for CHMM-decoding (Eq. (1)), the grid search
has to cover only the single parameter which we define for the
grid search as λFSW

c ∈ {0.1, 0.2, . . . , 0.9}. For the computation
of the modified audio and video likelihoods for TD (Eq. (2) and
(3)), a grid search over the two parameters λm withm ∈ {a, v}
is required. A low (high) weighting of one modality does not
necessarily result in a high (low) weighting of the other, which
is a conceptual difference between the weighting of streams in
a CHMM and in TD. Furthermore, the admissible range for λm
for TD is not limited to values between 0 and 1.

3. Dynamic Stream Weights for
Turbo-Decoding

Dynamic stream weights are designed to optimally weigh the
information provided by the audio and video streams at each
time frame. In [9, 17], an Expectation-Maximization (EM)
based strategy is introduced which dynamically estimates the
λDSW
c values for Eq. (1).

Unfortunately, the algorithms proposed in [9, 17] do not
readily carry over from CHMM-based to TD-based stream
weighting. For CHMMs, the stream weight is used to bal-
ance the likelihoods of both modalities. The audio and video
weights sum to 1 and thus only the single parameter λc is
needed (Eq. (1)). For DSW in TD, however, the stream weight
balances the state likelihood in one modality with prior infor-
mation from the other. One has to estimate two parameters λa
and λv which do not need to complement to 1 at all (see Eq. (2)
and (3)). Furthermore, these parameters may vary within the
iterative process of the TD itself.

We introduce a new strategy here for the estimation of
DSWs, which incorporates principles from discriminative train-
ing, and we apply it to turbo-decoding-based audiovisual ASR.
The goal is to maximize (at each time frame t of each TD-
iteration) the modified likelihood of the state of the most likely
sequence which would result in the correctly decoded word se-
quence (i.e., a state from an oracle path sorac). At the same
time we strive to reduce the modified likelihoods of the N most
likely different sequences of states that would result in incor-
rectly decoded word sequences (i.e., the confusion paths sconf).
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3.1. Oracle and confusion paths search

The cost function in the estimation of DSWs involves two
sets of paths: N confusion paths sconf and one oracle path
sorac for audio and video modalities m ∈ {a, v}. The con-
fusion paths arise as solutions to the best-path search through
the matrix of state posteriors of a composite HMM repre-
senting all possible sentences for which we use the gram-
mar of our employed GRID database [18]. The composite
HMM is constructed according to the task grammar [com-
mand,color,preposition,letter,digit,adverb] by the parallel and
serial connection of all single-word HMMs for each respective
word type. We define the confusion path set

sconf
m,n = [qconf

m,n(1), q
conf
m,n(2), . . . , q

conf
m,n(T )] ,with 1 ≤ n ≤ N

as those N -best Viterbi paths through the matrix of state poste-
riors of the composite HMM for a given utterance correspond-
ing to different incorrect word sequences (with time frames
t = 1, . . . , T ). Note that N + 1 best paths have to be eval-
uated in the path search in order to ensure to obtain N confu-
sion paths; a path within the N +1 best paths that results in the
correct word sequence can be discarded.

The oracle path sorac is the path through the state posteri-
ors that carries the highest likelihood of all word sequences be-
longing to the correct word sequence. It is found by first con-
structing a forced-alignment HMM by sequential concatenation
of word HMMs according to the sentence label. Afterwards
we find the single best Viterbi path through the state posteriors
of this HMM. To find sorac

m = [qorac
m (1), qorac

m (2), . . . , qorac
m (T )],

we translate the state indices of the path through the forced-
alignment HMM for a single word sequence into the state in-
dices of the composite HMM describing all possible word se-
quences.

3.2. Discriminative cost function

The boosted mutual information criterion was defined in [19]
and [20] as a cost function for parameter estimation within dis-
criminative model training [21]. In this work we adapt this cri-
terion and define a cost function for modality m at each time
frame t = 1, . . . , T (note, that we neglect the time frame index
in the following equation) as

J(λm) = log
b̃m(om|qorac

m )κ∑N
n=1(b̃m,n(om|qconf

m,n)κ exp (−α · δm,n))
(7)

where α and κ are constant weighting coefficients. δm,n is a
distance measure between the oracle and the n-th confusion
path. This distance measure penalizes deviations of a confu-
sion path to the oracle path (low penalty for deviations towards
states corresponding to the correct word and a higher penalty
for states of different words). By finding the optimum of the
cost function, we obtain the stream weight that maximizes the
ratio of the modified likelihood for a state of the oracle path to
the sum of the modified likelihoods of the states in the confu-
sion paths. We evaluate the cost function at each time frame and
in each TD iteration for both of the modalities for a range of λ
values, and select that λ for which (7) becomes largest.

4. Experimental Setup
For our experiments we used a subset of the audiovisual data
provided in the GRID database [18]. The GRID database con-
tains 34000 small-vocabulary semantically unpredictable sen-
tences with fixed grammar uttered by 34 speakers.

We divided the dataset into a training set (90% of the data)
for speaker-dependent model training and a development set
(5% of the data) for the stream weight estimation. Since we are
working with oracle label information per sentence, all recog-
nition results in this contribution (for FSW and DSW) are nec-
essarily based on this development set. For the next phase of
development, a third subset, the test set (5% of the data), will
be used to evaluate the speech recognition performance in con-
junction with an automatic estimation of fixed as well as dy-
namic stream weights as in [17], which is under development.

The following analyses were done at different levels of fi-
delity of the underlying audio signals, i.e. with clean speech
as well as speech in babble noise and white noise. For
the latter cases, signals at different SNR levels were created
(SNR = {0, 5, 10, 15} dB). The additive noise was taken from
the NOISEX-92 database [22]. For the video streams, the orig-
inal clean signals from the GRID database were used.

The (MFCC-based) audio features and video features (DCT
features of the mouth region) that we extracted were the same as
the ones described in [17]. Here, however, we used a sampling
rate of fs = 16 kHz instead of 8 kHz for the audio signals and
we kept the full dimension of 39 for the audio features (while
the dimension was reduced in [17]). The dimension of the video
features was reduced to 31 as in [17] by means of a linear dis-
criminant analysis. The speaker-dependent models for the ASR
system were 51 single-stream left-to-right word HMMs and one
additional HMM for silence (384 states for audio and 128 states
for video). All experiments were carried out with our Java Au-
diovisual SPEech Recognizer JASPER[3].

Within the ASR system, we used CHMM-based decoding
and TD. In the TD procedure we used a flat prior ga(qa) =
1, ∀ qa for the audio state posterior calculation in the first of
in total 4 TD-iterations and then performed a best-path search
for the decoding based on the audio posteriors. We selected a
constant weight for the prior probability λp = 0.001.

To cover a wide range of values with a rather small num-
ber of grid-search iterations for the estimation of FSWs (on the
development set), we defined an exponential search space such
that λFSW

a/v ∈ {20, 21, ..., 27}. The parameters of the cost func-
tion for the DSW estimation were set to α = 0.5 and κ = 0.75
and we evaluated the cost function for 1000 values of λ, with
10−3 ≤ λ ≤ 1

λp
, and evaluated N = 15 confusion paths. The

performance of the various ASR systems was measured with
the recognition accuracy as defined in [17].

5. Speech Recognition Results
Table 1 presents the resulting FSWs for CHMM and TD-based
data fusion. For both decoding approaches, the amount of video
information that leads to a good ASR performance increases
with a decrease in the audio-SNR. This is reflected in a de-
creasing trend of λc over the SNRs for CHMM decoding and
a decreasing trend of the ratio λa/λv over the SNRs for TD.

Table 2 shows the accuracy of audiovisual ASR via CHMM
decoding. These results serve as a reference for the TD-based
recognition. They are in agreement with the results reported
in [17]. For purely audio-based decoding, we observe that for
clean signals, the ASR performs very well, but with an increas-
ing amount of noise, the ASR accuracy drops considerably. The
accuracy of ASR based on pure video information is 86.40%.
Combining audio and video information with equal weighting
(λc = 0.5) leads to an improvement in ASR performance (com-
pared to audio only) over all SNR levels, but especially for low-
SNR scenarios. However, in one noise scenario (white noise, 0
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Table 1: Oracle-based fixed stream weighting for different noise
scenarios.

Noise SNR CHMM Turbo decoding
Type [dB] λFSW

c λFSW
a λFSW

v λFSW
a /λFSW

v

Clean - 0.8 32 8 4.00

B
ab

bl
e 15 0.7 128 32 4.00

10 0.6 32 32 1.00
5 0.5 32 32 1.00
0 0.3 8 128 0.06

W
hi

te

15 0.6 32 32 1.00
10 0.5 8 32 0.25
5 0.3 8 32 0.25
0 0.2 8 128 0.06

Table 2: ASR accuracy (in %) of CHMM-based decoding.

Noise SNR Audio only Audio-visual
Type [dB] λc = 1 λc = 0.5 λFSW

c λDSW
c

Clean - 97.83 98.04 98.67 99.04

B
ab

bl
e 15 90.64 95.75 96.37 97.39

10 78.85 93.79 94.04 95.82
5 55.37 91.07 91.07 93.79
0 31.43 86.89 88.44 90.91

W
hi

te

15 77.87 94.11 94.25 95.99
10 54.43 91.45 91.45 93.86
5 32.71 88.21 89.10 91.41
0 21.06 83.94 87.56 89.85

Average - 60.02 91.47 92.33 94.23

Table 3: ASR accuracy (in %) using turbo decoding and differ-
ent stream weights λ = [λa, λv].

Noise SNR λ = λ = λ =
Type [dB] [32, 32] [λFSW

a , λFSW
v ] [λDSW

a , λDSW
v ]

Clean - 97.20 98.81 99.46

B
ab

bl
e 15 96.80 97.02 98.71

10 95.17 95.17 97.56
5 92.32 92.32 95.83
0 85.16 88.43 92.81

W
hi

te

15 95.81 95.81 97.83
10 93.40 93.43 96.36
5 89.16 90.19 94.39
0 80.08 87.92 91.59

Average - 91.68 93.22 96.06

dB) the performance of coupled-HMM-based audio-visual ASR
using equal stream weights is worse than the video-only ASR.
Improvements in ASR performance can be achieved by the ap-
plication of the optimally estimated FSWs: then, bimodal de-
coding outperforms both of the unimodal approaches in all sce-
narios. When the oracle DSWs are used, the ASR performance
is improved again in all noise types and levels.

The ASR accuracy for TD-based ASR is presented in Ta-
ble 3. We employ the vector λ = [λa, λv] to represent both
weights in a compact form. TD-based ASR performs better than
the CHMM-based one in many but not all noise scenarios for
equally weighted information from both modalities. Note that
we selected the equal weighting λ = [32, 32] as this weighting
provided the best average accuracy (over all noise scenarios) of
all equal weightings. When using optimal FSWs our TD-based
ASR outperforms the respective CHMM-based ASR for all but
one case and the average performance of TD-based ASR using
fixed weights is between the performance of FSW- and DSW-
based CHMM ASR. The newly proposed dynamic weighting
of audio and video streams for TD-based ASR clearly results
in the highest accuracy in our experiments. Especially for low-
SNR scenarios the accuracy increases considerably. Compared
to the case of fixed stream weights, the average performance
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Figure 2: Dynamic weights of audio and video streams in four
TD-iterations for the GRID-sentence ’lay green at s one please’
with no additional noise (a), or in the presence of babble noise
(b).

increases from 93.22% to 96.06%.
An example of oracle dynamic stream weights for one sen-

tence is shown in Fig. 2 for two of the acoustic scenarios. Es-
pecially in the second TD-iteration the difference of the audio
weighting for the clean signal compared to the noisy scenario
is observable. For both scenarios we observe a similar weight-
ing of audio in the very first TD-iteration which is related to the
initialization with a flat prior. The overall weighting fluctuates
over time and over the TD-iterations. However, it is observable
that the video information is assigned a higher weighting for the
noisy case (Fig. 2b) than in the case of noise-free audio signals
(Fig. 2a).

6. Conclusions
The integration of audio and video data for speech recognition
significantly improves ASR results in noisy scenarios. The best
performance is typically achieved by using turbo-decoding for
this purpose. In this paper, we have shown how a dynamic
weighting of audio and video information can notably benefit
such turbo-decoding-based speech recognition.

In order to obtain optimal stream weights based on label
information, we have introduced a discriminative cost func-
tion that has allowed us to find maximally discriminative dy-
namic stream weights. The results have shown that the speech
recognition accuracy can be improved notably, both in compar-
ison to fixed stream weights and in comparison to dynamically
weighted CHMM-decoding.

However, the computation of these oracle DSWs relies on
oracle knowledge about the correct word sequence, and the
method is hence not applicable directly to ASR. Instead, the or-
acle stream weights can serve as high-quality training targets
for deep-neural-network or regression stream weight estima-
tors, which only rely on signal- and classification-quality crite-
ria to find suitable DSWs. Hence, the proposed method serves
as an intermediary step, providing us with arbitrarily large sets
of maximally discriminative training targets for such stream-
weight estimators, the training and application of which is the
goal of our ongoing work.
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