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Abstract

Common fusion techniques in audio-visual speech processing

operate on the modality level. I.e. they either combine the

features extracted from the two modalities directly or derive

a decision for each modality separately and then combine the

modalities on the decision level. We investigate the audio-visual

processing of linguistic prosody, more precisely the extraction

of word prominence. In this context the different features for

each modality can be assumed to be only partially dependent.

Hence we propose to train a classifier for each of these features,

acoustic and visual modality, and then combine them on a deci-

sion level. We compare this approach with conventional fusion

methods, i.e. feature fusion and decision fusion on the modal-

ity level. Our results show that the feature-level decision fusion

clearly outperforms the other approaches, in particular when we

also additionally integrate the features resulting from the feature

fusion. Compared to a detection based only on the full audio

stream we obtain relative improvements from the audio-visual

detection of 19% for clean audio and up to 50% for noisy audio.

Index Terms: audio-visual, fusion, naı̈ve Bayesian, promi-

nence, background noise, prosody

1. Introduction

A large body of research has investigated the benefits of com-

bining acoustic and visual information for audio-visual speech

recognition [1, 2, 3, 4, 5]. However, the research on the audio-

visual processing of prosody only focuses on emotional prosody

[6]. Previously it had been shown that humans are able to use vi-

sual information to extract prosodic cues [7, 8, 9, 10]. Yet there

is to our knowledge no research into the benefits of visual infor-

mation in the context of the classification of linguistic prosodic

events. The system we presented in [11] was to our knowledge

the first such system. In this system we investigated the audio-

visual detection of prominent words. Humans use prosodic cues

to highlight a correction after a misunderstanding when talking

to another human but also when talking to a machine [12]. A

distinguishing feature of corrections is that they are frequently

hyperarticulated and hence very prominent [13]. Acoustic cor-

relates of prominence have been shown to include a longer du-

ration as well as specific pitch and intensity patterns [14, 15]. In

the visual modality prominence is mainly manifested in larger

jaw opening, lip spreading and protrusion and to some extent

via head movements [16, 17]. Prominence and pitch accent are

terms which frequently occur together. One approximation to

their relation is that perceived prominence results from a pitch

accent [18]. Different methods have been developed to detect

pitch accent and prominent words from the acoustic modality

[19, 13, 20].

In [21] we extended our previous system and evaluated it

also when noise was present in the acoustic modality. In this

paper we have a closer look at the fusion of the audio and video

modality. We investigate previously presented fusion methods

which are mainly based on a feature-level or decision-level fu-

sion and introduce the feature-level decision fusion.

In the next section we describe the different fusion method-

ologies. Following this we introduce the dataset we used for our

experiments. We detail the different features extracted from the

acoustic and visual channel in Section 3. Section 4 will present

the results of our experiments. After that we will discuss the

results in Section 5 and give a conclusion in Section 6.

2. Audio visual fusion

In the context of audio-visual speech recognition and multi-

modal fusion in general many different approaches for the fu-

sion of the audio and video stream have been proposed [1, 22].

These fusion methods are mainly classified as feature-level and

decision-level fusion. In the next section we will give more de-

tails on these approaches and also introduce our novel feature-

level decision fusion which is based on a naı̈ve Bayesian model.

2.1. Feature Fusion

We implemented the feature fusion (FF), also called feature

concatenation, as [1]:

oAV = [oA,oV ] ∈ R
lAV , where lAV = lA + lV .

Hence we concatenated the feature vectors of the two modalities

to a larger feature vector.

2.2. Decision Fusion

For decision fusion (DF) we performed a classifier combina-

tion. I. e. we individually classified the two modalities and

then fused the decisions. As decisions we use a posteriori prob-

abilites P (Ci|o) provided an SVM which we use for classifica-

tion. While doing so we assume class conditional independence

between the two modalities:

P (oA,oV |Ci) = P (oA|Ci) ∗ P (oV |Ci),

where Ci represents the class i, in our case prominent or non-

prominent. Using Bayes formula on derives at [2]:

P (Ci|oA,oV ) =
P (Ci|oA) ∗ P (Ci|oV )

P (Ci)
∗ η(oA,oV )

where P (Ci) represents the a priori probability of class i. The

normalization term η(oA,oV ) is independent of the class Ci

and can hence be neglected for the classification.

2.3. Feature-level Decision Fusion

For the decision-level fusion conditional independence at the

modality level is assumed. In the machine learning community
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a common approach is called a naı̈ve Bayesian model which

assumes independence on the level of the different features used

for the classification [23]. Given N features this yields:

P (Ci|o1, . . . ,oN ) =

∏

N

n=1
P (Ci|on)

P (Ci)N−1
∗ η(o1, . . . ,oN )

Such naı̈ve Bayes classifiers generally perform well even if the

underlying assumption is not met. One reason for this is that

the assumption of conditional independence is a sufficient but

not a necessary condition. In many cases, in particular when

the dependencies of the different features are equally distributed

amongst the classes or cancel each other out, the naı̈ve Bayes

classifier has equal performance to the optimal classifier [23].

In the context of noise robust speech recognition an equiv-

alent approach to the naı̈ve Bayesian model was developed and

termed Full Combination Approximation [24]. This approach

was motivated by observations that in human perception, the

error rate for fullband perception is approximately equal to the

product of the sub-band error rates obtained when the each sub-

band was perceived on its own [24]. To obtain good perfor-

mance in the Full Combination Approximation also the full-

band posteriors were included. We follow this approach by

including the features derived from feature fusion of the indi-

vidual modalities and both modalities at the same time. We

termed this as full feature-level decision fusion. Additionally

we included features derived from fusing only a subset of the

features of one modality on the feature level. We termed this as

extended feature-level decision fusion.

2.4. Weighted Fusion

In particular in audio-visual speech recognition it has been ob-

served that weighting the different modalities during fusion

depending on their reliability largely improves performance

[1, 2, 3]. We also investigated the following weighting in our

experiments:

P (Ci|oA1
, . . . ,oAL

,oV1
, . . . ,oVK

,oAV ) =
[

∏

L

l=1
P (Ci|oAl

)
]λ [

∏

K

k=1
P (Ci|oVk

)
]1−λ

P (Ci|oAV )

P (Ci)L+K−1P (Ci)

∗ η(oA1
, . . . ,oAL

,oV1
, . . . ,oVK

,oAV )

This means we first fused the different features of the two

modalities individually according to the feature-level decision

fusion and then weighted each modality. Thereby L and K are

the number of features we used in the audio and video modality

respectively. We also used a conventional weighted decision fu-

sion. In this case we performed the decision fusion as outlined

above, i. e. we weighted the features resulting from the feature

fusion. Thereby we set K = L = 1 and removed the terms

depending on oAV and the final multiplication with P (Ci).

3. Dataset

To stimulate corrections and hence prominent words, we

recorded subjects interacting via speech in a Wizard of Oz ex-

periment with a computer in a small game where they moved

tiles to uncover a cartoon [11]. This game yielded utterances of

the form ’place green in B one’. Occasionally, a misunderstand-

ing of one word of the sequence was triggered and the corre-

sponding word highlighted, verbally and visually. The subjects

were told to repeat in these cases the phrase as they would do

with a human, i. e. emphasizing the previously misunderstood

word. However, they were not allowed to deviate from the sen-

tence grammar by e. g. beginning with ’No’. This was expected

to create a narrow focus condition (in contrast to the broad focus

condition of the original utterance) and thereby making the cor-

rected word highly prominent. In total 16 native English speak-

ing subjects were recorded [25]. The audio signal was originally

sampled at 48 kHz and later downsampled to 16 kHz. For the

video images a CCD camera with a resolution of 1280× 1024
pixel and a frame rate of 25 Hz was used.

We trained HTK [26] on the Grid Corpus [27] followed by a

speaker adaptation with a Maximum Likelihood Linear Regres-

sion (MLLR) step with a subsequent Maximum A-Posteriori

(MAP) step to perform a forced alignment of the data.

Three human annotators annotated the recorded data with

4 levels of prominence for each word. We calculated the inter-

annotator agreement with Fleiss’ kappa κ. While doing so we

binarized the annotations, i. e. only differentiating between

prominent and non-prominent. We tested different binarizations

and used the one where the agreement between all annotators

was highest. Next we calculated κ for each speaker individ-

ually. We then discarded all speakers where κ for the optimal

binary annotation was below 0.5 (0.4 < κ ≤ 0.6 is usually con-

sidered as moderate agreement). We have chosen such a rather

low threshold to retain as many speakers as possible. This yields

11 speakers, 6 females and 5 males. Overall we have 4622 ut-

terances of which 1892 are corrections, i. e. on average ≈ 420
utterances per speaker with ≈ 40% corrections.

4. Features

Most approaches in the computational processing of prosody

rely on functionals derived from low level acoustic descriptors

[28]. In the following we will detail which acoustic, or in our

case also visual, low level descriptors, we used and which func-

tionals we derived from them. These functionals then serve as

features for a Support Vector Machine (SVM) based classifier.

4.1. Acoustic low level descriptors

Since we expected the loudness l to better capture the percep-

tual correlates of prominence than the energy, we extracted it by

filtering the signal with an 11th order IIR filter as described in

[29], followed by the calculation of the instantaneous energy,

smoothing with a low pass filter with a cut-off frequency of

10Hz, and conversion into dB. Furthermore, we calculated D,

the duration of the word and the gaps before and after the word

as determined from the forced alignment. We also extracted the

fundamental frequency f0 (following [30]), interpolated values

in the unvoiced regions via cubic splines and converted the re-

sults to semitones. To detect voicing, we used an extension of

the algorithm described in [31]. Finally, we also determined the

spectral emphasis SE, i. e. the difference between the overall

signal energy and the energy in a dynamically low-pass-filtered

signal with a cut-off frequency of 1.5f0 [32].

4.2. Visual low level descriptors

To extract features from the visual channel, we used the

OpenCV library [33] to detect the face and the nose in the im-

age. The nose does not move much during articulation relative

to the head and is hence well suited to measure the rigid head

movements. As the detection of the nose with OpenCV was

not very reliable we implemented several post-processing steps.

First we extracted two nose hypotheses for each frame and kept
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those which were more plausible with respect to their position

in the face. In the sequence of nose positions we looked for a

temporal context where the nose position did not change much.

At the center of this temporal zone we cut out a region in the

image around the nose and used it as template for a correlation

based nose tracking. I. e. forward and backward in time from

this region we tracked the nose by correlating the current image

with the nose template and determining the shift. Once we ob-

tained the nose tracks we also determined the eyes in the image.

For doing so we detect the darkest spot in the image where we

expect the eyes based on the nose position, a frequently used

technique [34]. Based on the eyes’ position we calculated the

head tilt angle and compensated for it by rotating the image. We

cropped an image around the expected mouth region in the ro-

tated image (again based on the nose position) and centered the

mouth region in it by calculating the symmetry axis using the

algorithm proposed in [35]. Next we cropped the actual mouth

region and calculated a two-dimensional Discrete Cosine Trans-

form (DCT) on each subsampled mouth image of size 100×100
pixels. Out of the 10000 coefficients per image we selected the

20 with the lowest spatial frequencies.

4.3. Functionals and Contours

Prior to the calculation of the functionals, we normalized the

prosodic features by their utterance mean and calculated their

first and second derivative (except for D). As functionals we

extracted the mean, max, min, spread (max-min) and variance

along the word. Word boundaries were determined by the

forced alignment.

To extract additional information we also model the con-

tours of the features via a DCT. This is a frequently used and

computationally very simple method typically yielding good

results [36]. Effectively the DCT transforms the contour into

a frequency representation. By retaining only the K lowest

DCT coefficients we represent only the low frequency varia-

tions. For the acoustic modality we set KA = 10. Due to the

much lower sampling rate of the visual features (25 Hz as com-

pared to 100 Hz) we retained only KV = 7 coefficients for the

visual modality.

4.4. Context Features

Marking the focus of a word in an utterance, rendering it promi-

nent, also has an influence on the neighboring words, i. e. the

word in focus is hyperarticulated and the surrounding words are

hypoarticulated [37, 38]. It has been shown previously that tak-

ing this context information into account is very effective for the

detection of word prominence [39, 40, 19]. Therefore, we also

apply this in our approach by stacking features prior to classi-

fication such that they contain not only the functionals of the

current but also of the previous and following word (see [39]

for details).

5. Results

To discriminate prominent from non-prominent words, a Sup-

port Vector Machine (SVM) with a Radial Basis Function Ker-

nel was trained using LibSVM [41]. For each feature combina-

tion a grid search for C , the penalty parameter of the error term,

and γ, the variance scaling factor of the basis function, was per-

formed using the whole dataset. Prior to the grid search, the

data was normalized to the range [−1 . . . 1]. With the found op-

timal parameters an SVM was trained on 75% of the data and

tested on the remaining 25%. Hereby a 30 fold cross valida-

tion was run. To establish the 30 sets, a sampling with replace-

ment strategy was applied where the number of elements from

the prominent and non-prominent class was set corresponding

to their respective frequency in the dataset. This process was

performed individually for each speaker, hence all results are

speaker-dependent.
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Figure 1: Equal Error Rates (EER) averaged over all 11 speak-

ers with varying SNR levels and varying fusion approaches

(FF=Feature Fusion, DF=Decision Fusion).

As proposed in [42], we calculated Receiver Operating

Curves (ROC) by pooling the results of all cross-validations

and all speakers. The ROC is well suited to our very unbal-

anced dataset where non-prominent words are approximately

ten times more frequent than prominent words. From the ROC

we calculated the Area Under the Curve (AUC) and the Equal

Error Rate (EER). In our results AUC and EER strongly corre-

late so we will in the following mainly report EER.

To investigate the behavior of the fusion of the two modal-

ities when the acoustic channel has varying reliablity we added

to the clean audio signal ”car” noise taken from the Noisex

database [43] with varying Signal to Noise Ratio (SNR) lev-

els using the tool Fant [44]. We trained and tested the SVMs for

identical SNR, i. e. we performed a matched training. Thereby

we always kept the alignment obtained from the clean signals.

This will overall lead to results which are most certainly better

than in a real environment. Yet it avoids the dependence of the

results from the performance of the speech recognition system

in noise. With respect to our audio-visual fusion experiments

it will rather lead to a pessimistic estimation. In general larger

gains are expected from the audio-visual fusion when the audio

modality is less reliable.

For the extended feature-level decision fusion we also in-

cluded two features from the audio stream which were based on

the feature fusion of all acoustic features without either f0 or

loudness.

To calculate the weighted fusion we varied the parameter λ

and determined for each SNR level the λ value yielding the best

results averaged over all speakers.
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Features clean with noise

AUC EER in % AUC EER in %

Audio

FF 0.943±0.005 12.9% 0.859±0.008 20.5%

feature-level DF 0.948±0.005 12.3% 0.888±0.008 18.4%

feature-level DF full 0.954±0.004 11.6% 0.900±0.007 17.1%

feature-level DF extended 0.956±0.004 11.2% 0.908±0.007 16.3%

Video

FF 0.876±0.009 20.4% 0.876±0.009 20.4%

feature-level DF 0.880±0.009 19.7% 0.880±0.009 19.7%

feature-level DF full 0.885±0.008 19.3% 0.885±0.008 19.3%

AV

FF 0.943±0.005 13.4% 0.914±0.007 16.5%

DF 0.951±0.005 11.7% 0.922±0.006 14.9%

feature-level DF 0.954±0.004 11.6% 0.930±0.006 14.5%

feature-level DF full 0.959±0.004 10.9% 0.935±0.005 13.8%

feature-level DF extended 0.961±0.004 10.5% 0.938±0.005 13.3%

AV weighted

DF 0.952±0.005 11.6% 0.924±0.006 14.8%

feature-level DF extended 0.960±0.004 10.6% 0.936±0.005 13.6%

Table 1: Area Under the Curve (AUC) and Equal Error Rate (EER) averaged over all 11 speakers and all 7 SNR levels when car noise

was added. See the text for details on the features and fusion approaches (FF=Feature Fusion, DF=Decision Fusion).

The results in Table 1 show that the decision fusion outper-

forms the feature fusion in all cases. This is true when look-

ing on the two modalities individually as well as when com-

bined. Further, for the audio-visual fusion the feature-level de-

cision fusion outperforms the standard decision fusion. Includ-

ing the features from the feature fusion (feature-level decision

fusion full) and also the audio features excluding f0 or loud-

ness (feature-level decision fusion extended) yields additional

improvements. Again this is the case when looking only on the

individual modalities or at their fusion1. These differences are

already present when looking only at the clean signal. In the

noisy condition they become significantly larger (compare also

Fig.1). The results from the weighted fusion performed identi-

cal to the unweighted fusion2

6. Discussion

The results show that the assumption of conditional indepen-

dence on the feature level as expressed in our feature-level de-

cision fusion notably improves the performance. The more fea-

tures we add the better the performance gets. This is the case for

the clean and the noisy condition. The correlations between the

features seem not to be problematic. This is particularly visible

when we look at the case of further adding the audio features

resulting from the feature fusion without f0 or loudness to the

already complete feature set (what we termed extended). Even

for this case the performance improves further. For noisy au-

dio this improvement is also statistically significant. The good

results of the model assuming class conditional independence

suggest that the correlations between the features are distributed

evenly across the classes or cancel each other out.

We did not observe a benefit from dynamically weighting

the two modalities. We assume that the reason is that in our

1We could not perform an experiment equivalence to the extended

case for the visual channel as we only use two visual features
2The small differences are mainly due to numerical instabilities re-

sulting from the additional power operation.

two class problem not one particular class is selected when the

noise increases but rather the probabilities continue to distribute

evenly across the two classes. In such a scenario a weighting

yields no additional benefit.

Based on the results of the weighted and unweighted fusion

we conclude that the class conditional independence assump-

tion is well justified in our scenario. It remains unclear however

if this is due to the features we used or the two-class nature of

the problem.

7. Conclusion

In this paper we investigated different fusion methods in

the context of audio-visual word prominence detection. The

feature-level decision fusion we propose yielded in all cases the

best results. We observed gains of up to 50% compared to the

audio only detection when using noisy audio. With an equal er-

ror rate of 19.3% also the detection based on the video stream

alone showed good performance. From the visual modality we

used only rigid head movements and lip movements. It is how-

ever known that eye brow movements are also used by some

speakers to signal word prominence [45]. As the framework of

feature-level decision fusion seems to be able to cope well with

features with varying reliability the integration of more visual

features is something we want to pursue in the future.
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