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Abstract
Motor actions in speech production are both rapid and highly
dexterous, even though speed and accuracy are often thought
to conflict. Fitts’ law has served as a rigorous formulation of
the fundamental speed-accuracy tradeoff in other domains of
human motor action, but has not been directly examined with
respect to speech production. This paper examines Fitts’ law
in speech articulation kinematics by analyzing USC-TIMIT, a
large database of real-time magnetic resonance imaging data of
speech production. This paper also addresses methodological
challenges in applying Fitts-style analysis, including the def-
inition and operational measurement of key variables in real-
time MRI data. Results suggest high variability in the task de-
mands associated with targeted articulatory kinematics, as well
as a clear tradeoff between speed and accuracy for certain types
of speech production actions. Consonant targets, and partic-
ularly those following vowels, show the strongest evidence of
this tradeoff, with correlations as high as 0.71 between move-
ment time and difficulty. Other speech actions seem to chal-
lenge Fitts’ law. Results are discussed with respect to limita-
tions of Fitts’ law in the context of speech production, as well
as future improvements and applications.
Index Terms: Fitts’ law, articulatory difficulty, real-time MRI

1. Introduction
Motor actions associated with speech production are some of
the most rapid and dexterous that humans execute. It is not nec-
essarily possible, however, to attain high levels of speed and
accuracy at the same time. The present paper examines one as-
pect of accuracy in speech actions: the kinematics of reaching
for maximal articulatory targets. In speech production, there
are potentially multiple domains in which accuracy may be de-
manded, ranging from articulatory and acoustic, to prosodic and
communicative, with all of these demands being possibly si-
multaneous and overlapping. Kinematics are the present focus
because many human motor actions exhibit a clear kinematic
tradeoff between speed and accuracy. This tradeoff was first
formulated rigorously by Paul Fitts in his classic 1954 paper
[1]. Fitts posits a linear relationship between the difficulty of a
motor task (with difficulty being defined, essentially, in terms
of the precision required by task demands) and the time taken
to complete that task. Commonly known as Fitts’ law, this lin-
ear relationship has been used widely to model speed-accuracy
tradeoffs in a variety of human movement domains. Example
application domains include manual pointing and reaching (as
in Fitts’ original study), eye gaze [2], targeted foot movements
[3] and computer device interaction [4]. Still, it is not well-

established whether speech motor actions obey this pervasive
law of human movement. Despite evidence that speech articu-
lation obeys related tradeoffs among metrics of speed, distance
and curvature [5, 6, 7], Fitts’ law has not been directly examined
in the context of speech production. 1

It has been argued that speech motor actions vary consid-
erably in terms of their difficulty. Hardcastle [8] asserted that
the difficulty (or complexity, to use his terminology) of an ar-
ticulatory action should be defined in terms of both the num-
ber of articulatory variables that are recruited over the course
of that action, and in terms of the precision required for each
of those variables. The issue of articulatory precision, and its
kinematic consequences, is entirely compatible with Fitts’ law.
Hardcastle even makes direct reference to the speed-accuracy
tradeoff in speech production, while arguing that fricatives re-
quire more precision than stop consonants: “One of the possible
effects of this greater precision is that the articulators involved
in the production of a fricative might move more slowly than for
the production of a stop.” Hardcastle notes that this may help to
explain why vowels are often lengthened before fricatives (as
originally suggested by MacNeilage [9]) and lower vowels are
longer than higher vowels [10]. This is also a possible expla-
nation for the observation that fricatives have longer durations,
in general, than stops [11]. The notion of articulatory difficulty
may also help to explain why fricatives tend to be acquired later
than stops [12]. Differences in difficulty may aid in explain-
ing why some productions are more quickly impacted when
the condition of the motor system changes, as in the idea that
sleepiness and alcohol intoxication lead to the salient changes
in fricatives associated with “slurred speech” [13].

The purpose of this paper is two-fold. The primary goal is
to analyze speech articulation from a large database of real-time
magnetic resonance (rtMRI) data, in order to assess whether ar-
ticulatory kinematics conform to Fitts’ law. An associated goal
is to address the methodological challenges inherent in perform-
ing Fitts-style analysis, including how to define the key vari-
ables of Fitts’ law in the domain of speech articulation, and
how to operationalize these definitions on complex and high-
dimensional rtMRI data. Section 2 gives a brief introduction to
the concepts and mathematics behind Fitts’ law. Section 3 de-
scribes the data used in the present study, and the necessary pre-
processing for the task being considered. Section 4 explains the
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present approach to applying Fitts’ law in the domain of speech
production data. The results of applying the proposed method-
ology to rtMRI data, and a discussion of the results in terms of
the goals of the paper, are given in Section 5.

2. Fitts’ law
Given a target associated with a given task, as well as an initial
position (also, context), key parameters of that action can be de-
fined, and incorporated into a simple framework that represents
the difficulty associated with that task. One parameter is the
distance to the target from the initial position. Longer distances
are assumed to make a task more difficult. The other parameter
is the width of the target. A wider target is assumed to make
a task less difficult, perhaps corresponding to more slack being
permitted in declaring an action successful.

The ratio of the distance, D, and the width, W, are then
associated with the index of difficulty (ID) in the following way:

ID = log2(D/W + 1) (1)

The ratio D/W constitutes one definition of the precision of a
task. Taking the base-2 logarithm of this precision, then, gives
the ID units that can be interpreted as bits, inspired by Claude
Shannon’s information theory [14]. The ID, having encapsu-
lated a notion of precision of action, should then be related to
the movement time (MT) associated with a given task, under the
hypothesis that a tradeoff exists between speed and accuracy of
that task. This relationship, Fitts’ law, is commonly formulated
as a simple, linear one:

MT = a · ID + b (2)

Fitts’ law has been derived in various ways since the original
formulation [15, 16, 17].

Note that, whereas the distance associated with a task is
typically fairly straightforward to define given an initial posi-
tion and a target (e.g., the Euclidean distance), there have been
many definitions presented of the width parameter. Fitts’ orig-
inal experiments included targets with a literal, physical width
of varying size, but many experimental setups have only a point
target (as assumed in many human actions). In the domain of
speech production, however, one is faced with an added com-
plication stemming from a lack of consensus regarding how an
articulatory target should be defined, or indeed whether an ar-
ticulatory target (as opposed to acoustic) exists at all. In the
present work, it is assumed that articulatory targets do exist,
following the specific definition explained below.

To apply Fitts-style analysis to speech production data, it
is necessary to operationally define the targets of articulation in
space and time. To that end, it is assumed that a single artic-
ulatory target is associated with each phoneme. Targets might
not be reached during continuous speech for a variety of rea-
sons, including undershoot, misarticulation, or tolerance of the
controller to some deviation from the target. However, it is as-
sumed that the action associated with a given phone comes clos-
est to achieving its target at the temporal center of the associated
phone interval. Thus, each targeted task in continuous speech
can be conceptualized as movement from one phoneme target to
another, constituting a specific diphone. Tasks conceptualized
this way can also be referred to by diphone, which represents
a context-target task pair. It is further assumed that the target
of a given phoneme is a vector in high-dimensional articulatory
space. The location of that vector is estimated as the mean of
all tokens with a given phoneme label. The initial position for a

(a) initial position: A (b) target: S

(c) initial position: i (d) target: d

Figure 1: Example high- and low-ID tasks for subject M2. The
top row, (a)-(b), represent one of the highest ID tasks, while the
bottom row (c)-(d) represents one of the lowest. Images were
reconstructed from the L articulatory features in Z (see text).

given task is assumed to be the target immediately preceding the
current one. All these notions will be defined formally below.

3. Real-Time MRI Data & Pre-Processing
Data used here are from the USC-TIMIT database [18]. USC-
TIMIT is a publicly-available collection of speech production
data from male and female speakers of American English.
Speech articulation data were gathered for the database using
rtMRI, as well as electromagnetic articulography. Resolution
of the rtMRI data is 68 by 68 pixels, with pixels 2.9 by 2.9
mm in size, at a frame rate of the 23.18 frames/s. Audio was
simultaneously recorded at 20 kHz sampling frequency, and
later subjected to noise cancellation [19]. The rtMRI data from
two male and two female subjects from the database (i.e., M1,
M2, W1 and W2) were used in the present analysis. Forced
phoneme alignment was carried out using SAIL-Align [20].
Subjects were analyzed separately, due to concerns about the
proper method of combining articulatory features across sub-
jects.

The analysis presented here began by treating the gray-scale
intensity values of each pixel in the image plane as a candi-
date articulatory feature [21, 22]. These candidate features were
pre-processed and recombined prior to analysis, in order to pro-
duce new features that are fewer in number and more specific
to speech articulation (details below). Such a pixel-wise ap-
proach may seen unintuitive, but it provides the opportunity to
analyze data about the entire midsagittal plane, while making
minimal assumptions about what information might be impor-
tant for describing articulation. Pixel-wise analysis is also rela-
tively robust compared to a more traditional edge-detection and
boundaries-extraction approach when applied to low-contrast,
low spatial-resolution rtMR images [23].

The rtMRI image sequences were pre-processed to facili-
tate further analysis, in particular to (a) isolate frames of inter-
est, and (b) reduce the high dimensionality of the data to a man-
ageable number. Analysis began with an image sequence,X , of
the form X = [I1I2I3 . . . In]T , comprising all n image frames
Im in the corpus from a single subject, where the images Im are
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vectorized in column format. That is, pixels located at (i, j) in
rectangular r by c image format are now located at c(i− 1) + j
in the vector I , and I is of length rc. A retrospective intensity
correction scheme was employed, incorporating a nonparamet-
ric, monotonically increasing estimate of coil sensitivity, which
was derived from all pixel values in the image sequence [22].
Image intensity correction results in a matrix Xc of corrected
image vectors.

Pixels that are unrelated to vocal tract action were elimi-
nated by a simple threshold procedure. Pixels representing the
air around the head, or representing static spinal or brain tissue,
have intensities that change very little over the image sequence.
These pixels can be identified by calculating the variance along
columns of Xc, and selecting only columns with highest vari-
ance. Such pixels represent approximately 75% of all pixels in
the images analyzed in the present work, as identified by vi-
sual inspection of the images. Therefore, the matrix Xc

sub was
formed, which contained only those columns of Xc with vari-
ance above the 74th percentile across all columns.

The matrix Xc
sub is therefore n by rc

4
in size, but only a

subset of the n data vectors represent vocal tract configurations
temporally close to an articulatory target. Using the above oper-
ational definition of articulatory targets, the row vectors inXc

sub

corresponding to the temporal centers of phones are identified
and extracted. From the forced alignment, each phone is as-
signed a starting boundary Am, and an ending boundary Bm,
both in seconds. From these, the temporal center of a phone can
be calculated as Γm = Am+Bm

2
, and the corresponding image

frame is argmmin(Γm−τm)2 for timestamps τ1, . . . , τn asso-
ciated with each original image frame. In this way, a new matrix
Y is formed, which is P by rc

4
in size, where P is the total num-

ber of phones represented in the image sequence, P ≈ 15121.
Principal Component Analysis (PCA) was employed to fur-

ther reduce the data dimensionality. Z = Y CL was computed,
whereC is the matrix whose columns are eigenvectors of Y Y T ,
and CL is a matrix containing only L columns that represent
eigenvectors with the highest eigenvalues (i.e., the largest prin-
cipal components). The magnitude of L was chosen so as to
retain ≥ 85% of the variance for each subject being analyzed.
Across the subjects analyzed in the present study, L was ap-
proximately equal to 50. The resulting P by L matrix Z, which
contains a reduced-dimension representation of each vocal tract
configuration nearest to an articulatory target, was used for all
subsequent analyses. Example images reconstructed from the
matrix X are shown in Figure 1.

4. Distance and Width Calculations
For the purposes of analysis, a phoneme vector Π is defined,
which is of length P . The pth element of Π, Πp, is a numerical
index from 1 to 35, uniquely specifying an American English
phoneme, and representing the phoneme associated with row p
of Z. The vector Sg , which is of length P , is associated with a
given phoneme index g from 1 to 35. Sgp = 1 whenever Πp = g,
and 0 elsewhere. The mean configuration vector associated with
the phoneme indexed by g is

F g =
1T diag(Sg)Z

‖ Sg ‖1
(3)

where 1 is a vector of ones. The vector F g represents our
operationally-defined articulatory target associated with the
phoneme indexed by g.

For every pair of phoneme indices g and h, it is now possi-
ble to state precisely the spatial distance between the associated

x1 

x2 

x3 

Dgh 

Fg 

Fh 

k = 3 

Dfkh

Figure 2: Illustration of the key components of ID (variable
names taken from text). Target vectors are defined in articu-
latory space, represented here by 3 features, instead of L. The
articulatory target vector Fg is the initial position of the cur-
rent movement, and the target is Fh. Distance to the target is
the Euclidean distance between Fg and Fh. Width is calculated
with respect to a hypersphere around Fh, used to estimate the
density of other target vectors near the current one.

phonemes. Using the Euclidean distance in the L-dimensional
articulatory space, the distanceDgh =‖ Fg−Fh ‖. A graphical
representation of this can be seen in Figure 2.

To calculate the time to reach phoneme h from g (indices),
assume that Sgh is a vector that is 1 whenever both Πp = h
and Πp−1 = g. Similarly, Shg is 1 whenever both Πp = g
and Πp+1 = h. The mean time, then, between the phonemes
indexed by g and h across all instances is

Tgh =
1T diag(Sgh)Γ− 1T diag(Shg)Γ

‖ Sg ‖1
(4)

There are many possible definitions for the width of a tar-
geted speech production task. There are no hard physical lim-
its around the target, as in Fitts’ original experiments, which
necessitates exploring other definitions. Width could be de-
fined in terms of variability about the target, as in later mea-
sures of “effective” width [24, 25]. Other definitions have
been based on the amount of under/overshoot associated with
a particular movement [16]. However, the nature of speech be-
ing such that phonetic contrasts can be made with very small
changes in vocal tract configuration, allows the possibility for
another definition based on the density of targets in articulatory
space. Consider the distance values Dfh for a given h and all
f = 1, . . . , 35. These distance values with respect to h can
be sorted and ranked, and – given a parameter k – we can se-
lect the distance between Fh and the kth closest vector Ffk .
That distance can be used as the basis for a high-dimensional
k-nearest-neighbor density calculation. The probability density
of configuration vectors in the neighborhood of Fh will be:

Qh =
k

35 πL/2

Γ( L
2

+1)
DL
fkh

(5)

where Γ(x) is the gamma function and 35 is the number of
phonemes under consideration (24 consonants and 11 vowels,
with no diphthongs or rhoticized vowels). The width can be
calculated from this probability density as Wg = −log2(Qg).
Note that the final width value does not depend on the context.

Fitts’ law can be calculated directly using Dgh, Tgh and
Wh for any phoneme indexed by h, and presented in the con-
text of another phoneme g. Applying Equation 1, it is possible
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(a) CC (b) CV (c) VC (d) VV
Figure 3: Movement time (MT) vs. index of difficulty (ID) for subject M2. All context-target tasks are shown, divided by diphone type.

Context M2 M1 W1 W2
C-C r 0.207 -0.123 0.303 0.252

n = 220 p 0.002 0.069 < 0.001 < 0.001
C-V r 0.486 0.074 0.349 0.490

n = 195 p < 0.001 0.301 < 0.001 < 0.001
V-C r 0.711 0.121 0.536 0.678

n = 178 p < 0.001 0.104 < 0.001 < 0.001
V-V r 0.205 0.205 -0.054 0.205

n = 28 p 0.296 0.315 0.789 0.327

Table 1: Pearson’s r (and p-values) between movement time
(MT) and index of difficulty (ID) for all context-task tasks, di-
vided by diphone type. Correlation coefficients significant at the
p < 0.01 level are highlighted in bold.

to calculate IDgh = log2(Dgh/Wh + 1). Furthermore, by
Equation 2, we expect that Tgh = a · IDgh = b, for some
coefficients a and b.

5. Results and Discussion
Figure 3 plots the relationship between MT and ID for all sub-
jects. Each plot represents a different context-target task type.
For instance, CV represents all vowel targets for which the ini-
tial position was a consonant. The correlation values (i.e., Pear-
son’s r) between MT and ID – divided into the same context-
target types – are shown in Table 1.

Results suggest that the difficulty associated with targeted
articulatory kinematics is highly variable in speech production.
ID ranges from approximately 0.25 to 1.75 bits for all sub-
jects. A few general patterns in the distribution of ID can be
noted. Tasks involving back vowels and/or fricatives and af-
fricates tend to have the highest IDs, while tasks involving short
vowels and stop consonants tend to have the lowest IDs. For
example, VC tasks with the highest IDs in the current analysis
included A-

>
dZ, A-

>
tS, A-S and A-Z for subjects M2, W1 and W2,

with the raised variants U-
>
tS, U-S and U-Z for M1. VC tasks with

the lowest IDs included i-t, i-d for all four subjects. Figure 1
shows low- and high-ID tasks for subject M2.

Results also suggest that certain types of actions exhibit
a clear tradeoff between speed and accuracy. Significant cor-
relations can be seen in the data that correspond to the re-
lationship between MT and ID predicted by Fitts’ law. The
strength of that relationship varies across context-target type,
and across subjects. The strongest such relationships are seen
for VC context-target tasks, with CV tasks showing nearly as
strong correlations. CC tasks also generally show significant,
but much weaker, relationships between MT and ID, whereas
VV tasks were not significant for any subject analyzed. Note
that many fewer VV tasks exist, as compared to other context-

target types. Significant correlations between MT and ID were
observed for three of our four subjects. It is clear already from
those three subjects that inter-subject variability exists in terms
of the strength of MT-ID correlations. However, subject M1
showed no significant correlations.

Despite several significant correlation values between MT
and ID, the correlations observed in the present analysis are rel-
atively modest compared to those observed in other domains of
human movement. Correlation coefficients above 0.9 are com-
monly reported in the literature [26]. In general terms, targeted
speech kinematics do seem to obey Fitts’ law, but with caveats
depending on the speaker and the specific actions analyzed. One
question raised by such a results is how this seemingly funda-
mental tradeoff, that has been well-established in other motor
domains, can be sometimes weakly obeyed or ignored alto-
gether in speech. A potential explanation is that Fitts’ law does
not incorporate factors that are crucial to speech production. As
mentioned above, speech has multiple levels in which accuracy
may be demanded. Speech motor actions have communicative
and prosodic goals, in addition to kinematic requirements. Tem-
poral constraints exist as part of those goals, both at the level of
phonetic segments (e.g., lengthening as a phonemic contrast)
and suprasegmentally (e.g. accenting). A modification of Fitt’s
law is needed to account for these various levels of task require-
ments, and associated timing requirements.

It should be noted that there are many sources of variability
in the present analysis that may have impacted the correlation
values, and may limit the generality of these results. One limi-
tation relates to the accuracy of finding a video frame near to the
temporal center of a given phone, which is limited by the tem-
poral resolution of rtMRI and the quality of forced phoneme
alignment. Recent advances in rtMRI protocols may alleviate
this limitation [27, 28]. Additional variability may stem from
non-Gaussian noise on pixel intensity values that rtMRI images
often contain. Added variability in the data/analysis would have
the clearest impact on the VV diphone correlation results, due to
their much smaller number. Data are also limited to a midsagit-
tal view of the speech articulators, meaning not all kinematic
aspects are captured in the data.

A possible application of the present work is in designing
new speech features for assessing neurocognitive changes. Fea-
tures based on timing and duration, such as speaking rate, have
been widely adopted as part of clinical assessments of neu-
rological conditions. Moreover, phoneme-level speaking rate
has been proven highly effective for predicting neurological
changes due to conditions ranging from depression to Parkin-
son’s disease [29, 30, 31]. Mean phoneme duration is highly
correlated with mean MT in the current data set (e.g., for sub-
ject M2, Pearson’s r = 0.681, with p � 0.001, n=899). If
phoneme durations are sensitive to task demands, it may help
to explain why phoneme durations are good predictors of neu-
rocognitive change.
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