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Abstract

Automatic prediction of speech intelligibility is highly desirable
in the speech research community, since listening tests are time-
consuming and can not be used online. Most of the available
objective speech intelligibility measures are intrusive methods,
as they require a clean reference signal in addition to the corre-
sponding noisy/processed signal at hand. In order to overcome
the problem of predicting the speech intelligibility in the ab-
sence of the clean reference signal, we have proposed in [1] to
employ a recognition/synthesis framework called twin hidden
Markov model (THMM) for synthesizing the clean features, re-
quired inside an intrusive intelligibility prediction method. The
new framework can predict the speech intelligibility equally
well as well-known intrusive methods like the short-time ob-
jective intelligibility (STOI). The original THMM, however, re-
quires the correct transcription for synthesizing the clean ref-
erence features, which is not always available. In this paper,
we go one step further and investigate the use of the recog-
nized transcription instead of the oracle transcription for obtain-
ing a more widely applicable speech intelligibility prediction.
We show that the output of the newly-proposed blind approach
is highly correlated with the human speech recognition results,
collected via crowdsourcing in different noise conditions.

Index Terms: Speech intelligibility prediction, twin-HMM,
speech recognition, speech synthesis, non-intrusive methods,
objective measures.

1. Introduction

The need to automatically assess the speech intelligibility is
growing in the field of speech signal processing. During the last
decades, many efforts have been made to present an accurate
machine-computable metric of speech intelligibility. Most of
the published measures are referred to as intrusive methods, as
they require a clean reference speech signal—in addition to the
degraded/processed speech signal—for predicting the speech
intelligibility. Measures like the articulation index (AI) [2], the
speech transcription index (STI) [3], the speech intelligibility
index (SII) [4], the short-time objective intelligibility (STOI)
[5], and mutual-information-based techniques such as [6], all
belong to the category of intrusive metrics. These measures
can not be used in situations where the clean reference signal
is inaccessible. This property poses a disadvantage for such al-
gorithms and reduces their applications. Another general disad-
vantage of such methods is that they are not applicable to sce-
narios like voice conversion or even bandwidth extension, be-
cause the comparison to the clean reference signal will indicate
unreasonable low intelligibilities in such scenarios [7]. In con-
trast to these metrics, there are non-intrusive methods, which do

not require the clean reference speech signal. For instance, in
[8], a hybrid discriminative-generative statistical model is used
in combination with auditory models in order to predict the in-
telligibility without using the clean reference signal. In another
work [9], a large set of speech specific features and feature di-
mensionality reduction techniques are used to train a Gaussian
mixture model (GMM), from which the intelligibility of unseen
data is predicted. Employing a combination of long- and short-
term features in a binary tree regression model to predict the
intelligibility is another approach suggested in [10]. Falk et
al. [11] use an auditory model to compute the speech to rever-
beration modulation energy ratios (SRMR) for predicting the in-
telligibility. The performance of the SRMR measure is investi-
gated in [12], for predicting the intelligibility results of hearing-
impaired listeners. The SRMR was later improved by taking
into account the sources of speech variation including pitch and
speech content [13]. It was shown that these variations can de-
grade the performance of the measure.

In a completely new and different framework, we have
recently proposed the so-called THMM-based non-intrusive
speech intelligibility prediction algorithm [1]. This algorithm
re-synthesizes the clean features that are required in an intrusive
speech intelligibility prediction framework, instead of directly
estimating the intelligibility. It has been shown that this method
can successfully estimate the clean features that are required
by the STOI algorithm. As the THMM-based method requires
the transcription of the noisy speech signal for synthesizing the
clean features, we used the true transcriptions in [1] for synthe-
sis. However, in many scenarios the oracle transcription would
not be available. In order to overcome this limitation, we pro-
pose to use the THMM approach for first recognizing the tran-
scription of the noisy speech signal, and then for synthesizing
the clean features.

Our results show that the proposed blind THMM-based in-
telligibility prediction approach is highly correlated with the hu-
man intelligibility scores for various noise conditions.

2. THMM-based Speech Intelligibility
Prediction

The twin HMM is a statistical model introduced by Abdelaziz
et al. [14] for audio-visual speech enhancement. Like conven-
tional HMMs, the THMM is composed of a sequence of states
modeling a time series of observations, e.g., the feature observa-
tion sequence of speech signals. However, in the THMM, each
state is associated with two output density functions (ODFs):
Recognition (REC) ODFs are used for modeling the distribution
of features suitable for recognition (REC features), and synthe-
sis (SYN) ODFs are employed for modeling the distribution of
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Figure 1: Framework of blind speech intelligibility prediction using twin hidden Markov models.

features appropriate for synthesis (SYN features). This char-
acteristic of the THMM approach makes it a convenient tool
for synthesizing clean speech from a given noisy speech signal.
The REC features that are used for speech recognition are cho-
sen to have a high accuracy in decoding the best state sequence
in HMMs and hence in automatically recognizing speech sig-
nals. In contrast, suitable features for synthesis do not have
the same strength in speech recognition tasks. The ability of
THMMs to share the same state sequence with two different
distributions makes it possible to use the REC and the SYN fea-
tures simultaneously for synthesizing a clean signal, leading to
a model that can optimize both recognition and synthesis per-
formance through an appropriate choice of features.

The main idea behind using THMMs in predicting the in-
telligibility is to synthesize the clean reference features for an
intrusive intelligibility prediction method such as STOI [1]. In
current framework, THMMs are used to recognize the unknown
transcription of a given noisy signal, prior to synthesizing the
clean reference features. Applying this idea to the THMM-
based method makes it fully blind and independent of any ad-
ditional data during the intelligibility prediction phase. In order
to implement this idea, we have chosen the STOI method [5]
for the intelligibility prediction part.

The framework of the proposed blind method is shown in
Figure 1. It is explained in detail in the following sections.

2.1. Training

During the off-line training phase shown on the left-hand-side,
two sets of output density functions are trained. At first, the
recognition distributions (REC ODFs) are trained using the
REC features and the iterative expectation maximization (EM)
algorithm. In the last iteration of this algorithm, the state occu-
pation probabilities γ are stored.

Then, for training the synthesis distributions (SYN ODFs),
the SYN features are weighted with the state posterior proba-
bilities γ and finally accumulated to form the SYN ODFs, as
in [14].

2.2. Alignment

In this phase, shown in the center of Figure 1, the REC features
are first extracted from the noisy or degraded speech signal,
the intelligibility of which we need to assess. Then, the REC
features together with the REC ODFs, trained in the training
phase, are used in a Viterbi algorithm to recognize the speech
content of the signal. The transcription information, resulting
from the speech recognition step, is then used in the forward-
backward algorithm, which uses the REC features in order to
compute the state posterior probabilities, the γ-matrix, defined
by γ(j, t) = p

(

qt = j|yREC
t

)

. Here, p(.) represents the prob-

ability distribution function. qt and y
REC
t are the THMM state

and the noisy REC feature vector at time frame t, respectively.

The main difference between this new framework and the
previous one in [1] occurs in this phase. In [1] the oracle tran-
scriptions were used in order to compute the state occupation
probabilities in the forward-backward algorithm. Requiring the
transcription data can still be restrictive for some applications.
Hence, we propose to use the automatic speech recognition
model, embedded in the THMMs, to create this information.
This modification makes the THMM-based method effectively
self-reliant.

2.3. Intelligibility Prediction

The actual intelligibility prediction is shown in the right part
of Figure 1. It uses the γ-matrix from the alignment phase to-
gether with the SYN ODFs of the THMM speech model to es-
timate the reference features for an intrusive intelligibility pre-
diction. As mentioned above, the STOI algorithm has been cho-
sen for this purpose. Therefore, the STOI-relevant features, the
DFT-based one-third octave band decomposition, are at first ex-
tracted from the noisy speech signal in this phase. Then, the
clean version of the same type of features is synthesized from
the THMM. Lastly, the noisy and clean features are compared
inside the STOI-based intelligibility prediction block and the
THMM-based-STOI (THMMB-STOI) measure is computed.
The intelligibility prediction block is exactly the same as in the
original STOI method after time-frequency analysis. It consists
of short-time segmentation, clipping and normalization and fi-
nally correlation coefficient computation.
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To derive the equations for estimating the clean SYN fea-
ture vectors, a minimum mean square error (MMSE) estima-
tor has been used. The cost function for the MMSE criterion,
CMMSE, is defined as follows:

CMMSE

(

x̂
SYN
t

)

= E

[

(

x
SYN
t − x̂

SYN
t

)

2
]

(1)

where E[.] stands for the expectation value, x̂
SYN
t represents

the estimate of the clean SYN feature vector at time frame t
and x

SYN
t is the corresponding true feature vector. Minimizing

CMMSE given only the observed features y
REC
t , which are the

noisy REC feature vector, results in the following optimum es-
timate:

x̂
SYN
t = E

[

x
SYN
t |yREC

t

]

. (2)

Equation (2) can be marginalized over all states of the
THMM:

x̂
SYN
t =

N
∑

j=1

p
(

qt = j|yREC
t

)

E

[

x
SYN
t |qt = j,y

REC
t

]

. (3)

Here, N is the number of states and qt is the state at time frame
t. Since the THMM assumes that xSYN

t and y
REC
t are condi-

tionally independent when qt is known, Equation (3) can be
reformulated as follows to obtain the final equation utilized for
synthesizing the clean feature vectors:

x̂
SYN
t =

N
∑

j=1

p
(

qt = j|yREC
t

)

E

[

x
SYN
t |qt = j

]

. (4)

Hence, to estimate the clean SYN features, the mean of the
SYN ODFs in each state, E

[

x
SYN
t |qt = i

]

, is weighted with the

posterior probability of occupying this state p
(

qt = j|yREC
t

)

=
γ(j, t), and summed over all states.

Figure 2 shows the one-third octave band representation of
a distorted signal with white noise at 0 dB SNR and its equiv-
alent clean and synthesized versions. One can observe that the
clean version of the noisy signal has been retrieved quite well
using the THMM-based approach and is mostly similar to the
actual clean counterpart, despite the unavailability of the refer-
ence transcription.

3. Experiments and Results

3.1. Dataset

The speech database used in this work was the Grid corpus [15].
In this corpus, there are 34 speakers, each of whom has uttered
1000 clean speech signals with a simple grammar, 6 words per
sentence, each of the form verb-color-preposition-letter-digit-
adverb. We also used a noisy version of this database, created
using speech-shaped noise (SSN) at 9 different SNRs in the
range from 6 dB down to -10 dB with steps of 2 dB. At each
SNR, there are in total 2000 noisy speech signals. The intelli-
gibility listening test results have been collected by Cooke et al.
[16] for this noisy version of the corpus. In addition, two other
noisy versions of Grid were created specifically for this study
using white and babble noise at the same SNRs of the SSN data.
Before starting the experiments, the data were randomly divided
into training (80%), development (10%), and test (10%) sets at
each SNR and each noise type separately. The training sets were
used to train the THMM, and the development sets were used
during the training phase to verify the accuracy of the THMM
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Figure 2: 1/3 octave band representation of (a) the clean Grid
sentence ”bin blue by v 6 please”, (b) the same signal synthe-
sized using a THMM, and (c) the corresponding distorted signal
with white noise at 0 dB SNR.

distributions. Finally, the performance of the proposed and the
baseline methods in predicting the speech intelligibility were
evaluated using the test set data. To obtain the human speech
recognition results, three separate listening tests were carried
out over the test and development set signals of each noise type.

3.2. Listening Tests

We measure the speech intelligibility of the above-mentioned
three noisy datasets by means of a large-scale listening exper-
iment, using crowdsourcing tests at CrowdFlower [17]. Each
test participant was asked to transcribe a set of 22 audio sig-
nals, containing different SNR conditions, ranging from -10 dB
to 6 dB in steps of 2 dB, where the noise type was fixed for a
given test set. In order to prevent memorization, we ensured that
the same utterance text was only utilized once within a given
test set.

Each test set also contained 4 clean utterances that were
used for quality control1. Those clean utterances were ran-
domly located between the actual test signals. Based on the
transcription results of the control utterances, only those partic-
ipants have been considered for the experiment that correctly
transcribed more than 50 % of the clean digits.

The transcriptions were recorded using a multiple-choice
approach by providing selections forms, i.e., radio buttons and
drop down menus. Each contributor was allowed to participate
multiple times but restricted to solve at most 6 test sets. The
payment for transcribing a single utterance was $0.01.

We have collected the responses from 849 individual partic-
ipants, considering only those participants who have passed the
quality control requirements during the test. This corresponds
to an overall number of 36018 transcribed utterances.

1Quality control can be helpful to identify contributors that are not
working fairly and to exclude those that are not sufficiently qualified for
the task (e.g., due to missing language skills in English).
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3.3. Experimental setup

The first 13 Mel frequency cepstral coefficients (MFCCs) plus
their first (∆) and second order derivatives (∆∆) were used as
REC features. For synthesis, the DFT-based one-third octave
band decomposition of the signal was used, as it is the type of
feature needed in the STOI algorithm. All other feature extrac-
tion parameters were also set as suggested in [5] for the STOI
algorithm.

The REC distributions were trained noise-dependently us-
ing the training datasets. In contrast, the SYN distributions were
trained using only the clean data. Using these settings, we could
get the highest possible accuracy in decoding the state posterior
probabilities and in synthesizing the clean features. It must be
noted that the requirement of clean data is limited to the off-line
training phase and no clean data is needed during the intelligi-
bility prediction phase.

3.4. Results and Discussion

To evaluate the performance of the objective speech intelligi-
bility measures, their predictions were compared to the human
speech recognition accuracy, which is computed in terms of the
word correct score (WCS). This is computed by dividing the
number of correctly recognized keywords by the total number
of keywords. Here, the WCS was averaged over ten randomly
selected files. Similarly, the results of the objective measures,
e.g. STOI, were also computed over the same ten files. In total,
we obtained 20 groups of ten files at each SNR. The compar-
isons were performed between the WCS and the objective intel-
ligibility measure computed for each group of ten files. Finally,
these comparison values were averaged over all SNRs and were
reported in Tables 1 and 2.

To perform the comparisons, it was first necessary to map
the output of the instrumental measure to the domain of the lis-
tening test results. To achieve this, a logistic regression function
was employed, as described in [6]. Three figures of merit, as
suggested in [6, 5], were utilized for evaluation: the normalized
cross correlation coefficient (NCC), the root mean square error
(RMSE), and Kendall’s Tau (τ ).

We have analyzed the performance of three speech intel-
ligibility prediction measures, namely the conventional STOI,
the THMMB-STOI using oracle transcriptions, and the blind
THMMB-STOI using the recognized transcription, in differ-
ent noise conditions. For speech-shaped noise (SSN), the per-
formance of the above metrics has additionally been evaluated
based on the listening test results collected by Cooke et al. [16].
The results, in Tables 1 and 2, demonstrate that the THMMB-
STOI with oracle transcriptions has a strong correlation with
both listening test results. For the blind THMMB-STOI, slight
decreases in accuracy were found relative to the STOI and the
original THMMB-STOI.

Table 1: Comparison of objective speech intelligibility mea-
sures with listening test results (WCS), collected by Cooke et
al. [16], for SSN in terms of NCC (%), RMSE, and τ (%).

Measure NCC (%) RMSE τ (%)

STOI 93.20 0.095 73.94
THMMB-STOI

(Oracle)
93.17 0.095 73.94

THMMB-STOI
(Blind)

92.74 0.098 73.76

Table 2: Comparison of objective speech intelligibility mea-
sures with listening test results (WCS), collected by crowd-
sourcing, for SSN, Babble, and White noise in terms of NCC
(%), RMSE, and Kendall’s Tau (τ ).

Noise Measure NCC (%) RMSE τ (%)

STOI 92.46 0.072 73.24

SSN
THMMB-STOI

(Oracle)
92.10 0.073 72.69

THMMB-STOI
(Blind)

92.43 0.071 72.67

STOI 94.29 0.073 77.05

Babble
THMMB-STOI

(Oracle)
93.71 0.076 74.87

THMMB-STOI
(Blind)

92.95 0.080 73.82

STOI 85.69 0.065 66.11

White
THMMB-STOI

(Oracle)
84.45 0.067 64.54

THMMB-STOI
(Blind)

83.71 0.069 63.73

However, it is evident that the blind THMMB-STOI is still
in good agreement with human data, even though it did not use
any extra information like the clean signal or the reference tran-
scriptions. It can also be seen that both THMMB-STOI methods
are performing well in comparison to the standard STOI mea-
sure in all noise types.

Overall, the THMM-based methods have successfully esti-
mated the clean features for the STOI method, even in the blind
version without a need for transcriptions. Furthermore, it was
shown that both blind and oracle-based THMMB-STOI mea-
sures have a strong correlation with human intelligibility data
in three different noise types.

4. Conclusions

In this paper, we have presented a new blind and non-intrusive
approach for predicting the speech intelligibility, which is based
on using THMMs and an automatically recognized transcrip-
tion. Whereas the original THMM-based method needs the
speech transcription for clean speech synthesis, here, it was pro-
posed to use the THMMs for both automatically recognizing the
transcriptions and synthesizing the clean features. The experi-
mental results revealed that the proposed method has a good
accuracy, leading to high correlations to human speech recog-
nition results in different noise conditions. In comparison to
the oracle-based THMMB-STOI and the STOI measures, the
newly-proposed method had a slightly lower accuracy in pre-
dicting the speech intelligibility, but with added benefit of not
requiring any extra information such as a clean reference sig-
nal or an oracle transcription. This is a significant advantage in
comparison to the original THMM-based approach. It also has
the potential to be integrated into the framework of other in-
trusive intelligibility prediction methods and hence provide an
estimate of the clean reference features for them.
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