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Abstract
We address the problem of suppressing background noise from
noisy speech within a risk estimation framework, where the
clean signal is estimated from the noisy observations by min-
imizing an unbiased estimate of a chosen risk function. For
Gaussian noise, such a risk estimate was derived by Stein,
which eventually went on to be called Stein’s unbiased risk
estimate (SURE). Stein’s formalism is restricted to Gaussian
noise and exclusive risk estimators have been developed for
each noise type. On the other hand, we consider linear denois-
ing functions and derive an unbiased risk estimate without mak-
ing any assumption about the noise distribution. The proposed
unbiased estimate depends only on the second-order statistics
of noise and makes the proposed framework applicable to many
practical denoising problems where the noise distribution is not
known a priori, but one has access only to the samples of noise.
We demonstrate the usefulness of the proposed methodology
for speech enhancement using subband shrinkage, where the
shrinkage parameters are obtained by minimizing the newly de-
veloped risk estimator. The proposed methodology is also ap-
plicable to nonstationary noise conditions. We show that the
proposed denoising algorithm outperforms the state-of-the art
algorithms in terms of standard speech-quality evaluation met-
rics.
Index Terms: Speech denoising, Shrinkage estimator, Stein’s
unbiased risk estimate (SURE), Mean-squared error

1. Introduction
Noise reduction techniques find applications in mobile commu-
nication systems, hearing aids, speech compression, automatic
speech recognition, multimedia systems, etc. Speech enhance-
ment techniques can be broadly classified as: (i) Spectral sub-
traction algorithms, (ii) Wiener filtering techniques, (iii) Sub-
space methods, (iv) Statistical model-based methods, and those
that lie at the intersection of one or more of these classes. In
spectral subtraction algorithms, an estimate of the noise power
spectrum is subtracted from the noisy signal spectrum, to ob-
tain an estimate of the clean signal spectrum [1]. The key as-
sumption is that the noise is additive and stationary. Improved
versions of spectral subtraction algorithms are available in [2]
and [3]. In Wiener filter techniques, using an estimate of the
clean speech power spectrum and the noise power spectrum ob-
tained from the noisy speech, the Wiener filter is constructed
and employed for denoising speech. Hu and Loizou [4, 5]
incorporated psychoacoustic constraints in the Wiener filtering
paradigm. Chen et al. [6] studied the interdependency between
speech distortion and noise reduction after Wiener filtering and
also quantified them. In the Wiener filtering framework, one

requires an estimate of the power spectrum of the clean sig-
nal and noise. Typical power spectrum estimation strategies are
presented in [7–9].

The basic principle in the subspace approach is that the
noisy subspace is divided into two orthogonal subspaces,
signal-plus-noise and noise-only subspace. Enhancement is
performed by projecting the noisy signal on to the signal-plus-
noise subspace. Signal subspace decompositions can be ob-
tained using eigenvalue decompositions of the data covariance
matrix [10, 11] or singular value decomposition of the data ma-
trix [12, 13]. Statistical model-based methods minimize a risk
function (that measures the closeness between the clean speech
parameter and its estimate) based on the assumed statistical
model of clean speech and noise parameters to obtain the es-
timate of clean speech parameters from the noisy speech. De-
pending on the cost function used and the statistical assump-
tion on clean signal and noise parameters, different variants of
estimators have been proposed in [14–21]. Loizou’s book on
speech enhancement [22] is a recent and authoritative reference
on the topic. Recently non-negative matrix factorization (NMF)
based methods have been successfully used for speech enhance-
ment [23]. In this paper, we propose a novel single channel
speech enhancement method based on the new risk estimation
approach.

Denoising is essentially an estimation problem where a risk
function is minimized to obtain an estimate of the clean sig-
nal parameters. Direct minimization of the risk function results
in an estimator that is a function of the parameter to be esti-
mated or its statistics, which is often difficult to get in prac-
tice. An alternative approach is the risk estimation framework,
in which, instead of minimizing the original risk, an unbiased
estimate of risk that is a function of the observations is mini-
mized to obtain the unknown clean signal parameter. Assum-
ing the observations to be independent and identically Gaussian
distributed, Stein proposed an unbiased estimate of the mean-
squared error (MSE) [24], which is now called Stein’s unbiased
risk estimate (SURE). It is widely used for signal denoising ap-
plications [25–33]. The original formulation of SURE based on
the independent and identically distributed (i.i.d.) Gaussian as-
sumption is further extended to non-i.i.d. multivariate exponen-
tial family of distribution in [33]. SURE specifically depends
on the observation distribution, which limits its applicability to
the practical problem where the observation distribution is not
known a priori. In this paper, we derive an unbiased estimate
of the MSE assuming the denoising function to be linear, with-
out making any assumption on the observation distribution. The
solution is seen to be dependent on the second-order statistics.
Hence, the proposed unbiased estimate of the MSE, which de-
pends only on the second-order statistics, gives the flexibility of
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using risk estimation framework in conditions where the noise
distribution is not known. We also demonstrate the usefulness
of the proposed risk estimate in speech denoising applications.
A subband-shrinkage denoiser is developed where the shrinkage
parameter is obtained by minimizing the proposed unbiased es-
timate of MSE. We also show performance comparisons of the
proposed denoising algorithm with three state-of-the art algo-
rithms in three different noise conditions.

2. An Unbiased Estimate of the MSE
Consider the additive noise model x = θ + w, where θ ∈ Rn

(non-random) and the noise vector w is assumed to be indepen-
dent and identically distributed (i.i.d.) entries with zero mean
and variance σ2. Our goal is to obtain an estimate θ̂(x), of the
parameter θ ∈ Rn starting from the observation x that mini-
mizes the MSE:

R = E
{
‖θ − θ̂‖2

}
,

= E
{
θTθ
}
− 2E

{
θTθ̂
}
+ E

{
θ̂Tθ̂
}
. (1)

In the above cost function, the first term does not affect the
minimization and so it need not be considered, but the sec-
ond term is a function of θ, which is the parameter to be es-
timated. This makes the minimization infeasible. An alterna-
tive is produced by the risk-estimation framework. In this ap-
proach, instead of minimizing R, one minimizes an unbiased
estimate R̂, of R, to obtain θ̂. To find an unbiased estimate
of R, one computes an unbiased estimate of E

{
θTθ̂
}

. Con-

sider the estimator, θ̂(x) = Hx, where H ∈ Rn×n, results

E
{
θTθ̂
}
= E

{
θTHx

}
. We have that

E
{
θTHx

}
= E

{
xTHx

}
− E

{
wTHx

}
,

= E
{

xTHx
}
− E

{
wTHw

}
,

= E
{

xTHx
}
−

n∑
l=1

n∑
k=1

hl,kE {wlwk} ,

= E
{

xTHx
}
−

n∑
l=1

hl,lσ
2, (2)

where hl,l is the (l, l)th element of H. Substituting (2) in (1)
and using the fact that E

{
θTθ
}

= E
{
xTx

}
− nσ2, we ob-

tainR = E
{
xTx

}
− nσ2 − 2E

{
xTHx

}
+ 2

∑n
l=1 hl,lσ

2 +

E
{
xTHTHx

}
. An unbiased estimate of R is R̂ = xTx −

nσ2 − 2xTHx + 2
∑n
l=1 hl,lσ

2 + xTHTHx. Instead of min-
imizing R, we minimize R̂ to obtain optimal H. During the
derivation of R̂, no specific distribution assumption on the ob-
servation has been made. Hence, the proposed unbiased es-
timate of MSE is useful in scenarios where the observation
distribution is unknown, and only the knowledge of first- and
second-order statistics is available. In contrast, the SURE for-
mulation requires the observation distribution to be Gaussian.
For other noise distributions, specific risk estimators have to be
developed.

3. Speech Denoising
We develop a subband-shrinkage estimator for speech denois-
ing based on the proposed unbiased estimate of MSE. Subband-
shrinkage estimator is defined as θ̂ =

∑N
j=1 αjSjAjx, where

Aj and Sj correspond to the j th analysis and synthesis filters,
respectively, N is the number of subbands, and αj corresponds
to the shrinkage parameter in the jth subband. The subband-
shrinkage estimator is given as

θ̂ =

N∑
j=1

αjSjAjx =

N∑
j=1

αjH
(j)x =

N∑
j=1

αjφ
(j)

= Hx = Φα,

where H =
∑N
j=1 αjH

(j), Φ =
[
φ(1)φ(2) · · ·φ(N)

]
, and

φ(j) = H(j)x. The goal is to obtain the optimum shrinkage
parameter that minimizes R = E

{
‖θ −Φα‖2

}
. Since di-

rect minimization results in an unrealizable estimator, instead of
minimizingR, we minimize the unbiased estimate R̂ to obtain
the optimum shrinkage parameter, i.e., α∗ = argmin

α
R̂ (Φα).

For subband-shrinkage estimator, R̂ = xTx−nσ2−2xTΦα+
2qTα + ||Φα||2 where qj the jth component of q equals,∑n
l=1 h

(j)
l,l σ

2. To obtain the optimum α, setting ∂R̂
∂α

= 0 re-

sults in α∗ =
(
ΦTΦ

)−1 (
ΦTx− q

)
. To avoid the sign change

of subband waveform by negative shrinkage value we use final
shrinkage parameter as max

(
α∗j , 0

)
.

Implementation details: We use clean speech from TIMIT
database [34] and the noise samples from Noisex-92 database
[35]. We consider sampling frequency of 16 kHz and 32 ms
speech frames with 75% overlap for processing. For performing
multiband decomposition and reconstruction of noisy speech
signal, we use a 32-channel cosine-modulated perfect recon-
struction filterbank [36]. We consider frame-by-frame process-
ing of the speech signal, where the shrinkage parameters for
subbands for a particular frame are obtained by minimizing R̂.
A statistical model based voice activity detector (VAD) [37] is
employed to update the noise variance in speech absent frames
[22, pp. 543–544].

4. Results and Discussion
We compare the performance of the proposed subband-
shrinkage denoiser with three benchmark algorithms: (i)
Wiener filter algorithm with an a priori signal-to-noise ratio
(SNR) estimation method (WIENER), proposed in [7]; (ii) Sta-
tistical model-based short-time spectral amplitude (STSA) es-
timator of speech signal that minimizes the mean-squared er-
ror between the log-magnitude of the original STSA and its
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Figure 1: (Color online) Denoising performance comparisons:
(a) output SSNR and (b) output PESQ of different algorithms
for different input SNRs, where noise considered is white Gaus-
sian noise. The results have been averaged for 10 different
speech files and 10 independent noise realizations.
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Figure 2: (Color online) Denoising performance comparisons in terms of composite scores. (a) OVRL, (b) BAK, and (c) OVRL, for
different input SNRs. The results have been averaged over 10 different speech files and 10 independent noise realizations.

estimate (LOG-MMSE) [15]; and (iii) Bayesian non-negative
matrix factorization method for speech enhancement (BNMF)
[23]. We use the same noise variance estimation algorithm for
the proposed subband-shrinkage denoiser (SS-RE), WIENER
and LOG-MMSE. BNMF is a supervised technique that require
training, whereas SS-RE does not require training data. For per-
formance evaluation, we use the objective measures, segmen-
tal SNR (SSNR) [38], perceptual evaluation of speech quality
(PESQ) [39], and composite objective scores [40]. We use three
noise conditions for evaluation, white Gaussian noise and the
two real-world noise types from Noisex-92 database (F16 noise
and factory noise).

We first consider denoising of speech corrupted with white
Gaussian noise. Figure 1(a) shows the output SSNR of the
different denoising algorithms for different input SNRs. We
observe that the proposed subband-shrinkage denoising algo-
rithm based on risk estimation (SS-RE) shows better denois-
ing in terms of the output SSNR compared with the other al-
gorithms. SS-RE shows an SSNR improvement of 2.5 − 3 dB
compared with the competing techniques over the input SNR
range −5 to 20 dB. Figure 1(b) shows the output PESQ of dif-
ferent algorithms for different input SNRs. It is observed that
proposed SS-RE consistently dominates over all the other al-
gorithms in terms of the output PESQ. Next, we compare the
performance in terms of the composite objective scores (on a
five-point scale). It includes a composite measure for signal dis-
tortion (SIG), a composite measure for noise distortion (BAK),
and a composite measure for overall speech quality (OVRL).
Composite scores are obtained by combining the basic objec-
tive scores [40]. We use the MATLAB implementation of the
composite scores available with [22] for the evaluation. Figure
2 shows the performance comparison of different algorithms
for different input SNRs in terms of the composite measures.
It is observed that, for input SNR ranges from −5 to 20 dB,
the proposed SS-RE consistently outperforms the other denois-
ing algorithms in terms of OVRL, BAK, and SIG scores. The
experimental results suggest that SS-RE yields a higher noise
attenuation while maintaining low speech distortion, and main-
tains a high overall quality of the denoised speech compared
with the other algorithms.

We next consider denoising performance evaluation of
the algorithms when speech is corrupted with real-world noise
types. For experiments, we consider F16 engine noise and fac-
tory noise from the Noisex-92 database. The F16 noise is rela-
tively stationary whereas factory noise is non-stationary. Since
the real-world noises are not white, we estimate noise variance
in each subband, and obtain optimum shrinkage parameter sep-
arately for each subband by minimizing the corresponding unbi-
ased estimate of the MSE. Figure 3 shows the denoising perfor-
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Figure 3: (Color online) Denoising performance comparisons
of different algorithms in terms of SSNR and PESQ. The re-
sults have been averaged over 10 different speech files and 10
different noise realisations.

mance of different algorithms for different input SNRs in terms
of SSNR and PESQ, where the noise types considered are F16
noise and factory noise. The results are averaged over 10 differ-
ent speech files and 10 different noise realizations (noise taken
at randomly selected locations from the long noise sequence
added to the clean speech to create noisy speech). Figures
3(a) and 3(b) show the denoising performance of different al-
gorithms in terms of SSNR and PESQ, where noise considered
is F16 noise. It is observed that SS-RE consistently outperforms
the three algorithms in terms of SSNR and PESQ for all input
SNRs. Figures 3(c) and 3(d) shows the denoising performance
of different algorithms in terms of SSNR and PESQ in factory
noise which is highly nonstationary. We observe from the Fig-
ure 3(c) that for SS-RE, the output SSNR gain is high compared
with the other denoising algorithms. However, the PESQ gain
of SS-RE and WIENER are matching closely. The PESQ gain
is relatively low compared with the F16 noise case. PESQ gain
is high in F16 noise compared with factory noise because F16
noise is relatively stationary and hence noise variance estimate
will be more accurate. Figure 4 shows a performance compar-
ison in terms of the composite scores. It is observed that in
the case of F16 noise, the SS-RE scores of OVRL, BAK and
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Figure 4: (Color online) Denoising performance comparison of
different algorithms for different input SNRs in terms of com-
posite scores.

SIG are high compared with the other algorithms. In the case
of factory noise, it is observed that SS-RE shows a high OVRL
gain (cf. Figure 4(b)) in the range 0 dB to 20 dB but below
0 dB, BNMF shows high output OVRL. From Figure 4(d), we
observe that the BAK score is high for the SS-RE algorithm.
For low input SNR values, SIG value is lower than the other
algorithms (cf. Figure 4(f)). From the results relating to the
real-world noise cases, we infer that, if the noise variance esti-
mate is accurate the performance of the SS-RE algorithm will
be significantly better than the other algorithms. In the case of
non-stationary noise, where the noise variance estimate may not
be accurate, the denoised speech overall quality is comparable
to the best performing algorithm under comparison. Moreover,
the attenuation of background residual noise is high in SS-RE
for all the observed cases as indicated by the BAK scores.

Figure 5 shows the spectrogram plots of the different de-
noising algorithms, where the noisy signal is generated by
adding F16 noise at input SNR of 5 dB. It is observed that
the SS-RE denoising algorithm yields a higher noise attenua-
tion and maintains a low speech distortion compared with the
other algorithms. In the case of WIENER and LOG-MMSE,
the speech distortion is low but the residual noise is high. In
the case of BNMF, noise attenuation is lesser in the initial
two seconds. This is because the algorithm learns the noise
model during this time. However, BNMF shows a higher
noise attenuation after 2 seconds but at the cost of high speech
distortion. The denoised speech files are available online at
http://spectrumee.wix.com/ssre.
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Figure 5: (Color online) Spectrograms of the denoised speech
obtained using different algorithms

5. Conclusions
We derived an unbiased estimate of the MSE considering a mul-
tiplicative denoising function. Unlike conventional SURE, no
distribution assumption is made for deriving the unbiased MSE
estimate. The proposed unbiased estimate of MSE, which de-
pends only on the second-order statistics allows the flexibility of
using the risk estimation frame-work in many real-world noise
scenarios where the distribution of noise is unknown. We de-
veloped a subband-shrinkage denoiser based on the proposed
unbiased estimate of the MSE where the shrinkage parameters
are obtained by minimizing unbiased estimate of the MSE. It is
observed that the proposed subband-shrinkage denoiser outper-
form the three benchmark algorithms in terms of SSNR, PESQ,
and composite scores.
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