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Abstract

This paper introduces a novel time-frequency masking approach
for speech enhancement, based on the consistency of the phase
of the cross-spectrum observed at multiple microphones. The
proposed approach is derived from solutions commonly adopted
in spatial source separation and can be used as a post-filter in
traditional multi-channel speech enhancement schemes. Since
it is not based on a modeling of the coherence of diffuse noise,
the proposed method complements traditional post-filters im-
plementations, targeting non diffuse/coherent sources. It is par-
ticularly effective in domestic scenarios where microphones in
a given room capture interfering coherent sources active in ad-
jacent rooms.

An experimental analysis on the DIRHA-GRID corpus
shows that the proposed method considerably improves the
signal-to-interference-ratio and can be used on top of state-of-
the-art multi-channel speech enhancement methods.

Index Terms: speech enhancement, microphone array, post-
filter.

1. Introduction
Thanks to the recent advances in Automatic Speech Recogni-
tion (ASR), a variety of voice-enabled applications are emerg-
ing today, including solutions for home-automation and domes-
tic scenarios in general. With respect to more traditional office-
related scenarios, the domestic context presents additional chal-
lenges: the high variability of the acoustic conditions and the
presence of competitive speech sources or interferers in other
rooms of the home. This source of disturbance is not com-
monly targeted in literature: it cannot be addressed like diffuse
background noise neither it represents an actual source separa-
tion problem. As an example, Voice Activity Detection (VAD)
methods relying on statistical models of the speech signals may
be significantly affected by these competitive noise compo-
nents, unless very articulated algorithms are implemented [1].

Multi-channel speech enhancement is typically achieved
using a Minimum Variance Distortionless Response (MVDR)
beamformer followed by a single channel Wiener (post)-filter.
This combination has been shown to be equivalent to the opti-
mal multi-channel Minimum Mean Square Error (MMSE) en-
hancement [2]. A variety of different formulations for the post-
filter are available in literature [3, 4, 5] where the main open is-
sue is a proper estimation of the Power Spectral Density (PSD)
of the residual noise and of target, in order to derive the Wiener
filter. The state of the art solutions typically rely on a model of
the diffuse sound coherence to establish which Time-Frequency

(T-F) bins of the spectrogram of the recorded signals are dom-
inated by the target speech and which are noisy. These solu-
tions are not totally suitable for the domestic application sce-
nario where noise includes speech sources being active in other
rooms or other non-diffuse sounds.

We propose to attack this particular problem by applying a
multi-channel T-F masking based on the cross-spectrum phase
information. Following strategies already used in source lo-
calization in presence of multiple sources [6], we introduce a
multi-channel formulation of the MMSE post-filter by defining
a probabilistic soft association between the target source and
each T-F point, based on the distribution of the cross-spectrum
phase. From a more general perspective, the proposed approach
can be seen as an alternative way to solve the problem of evalu-
ating local SNR in each time-frequency bin to build the ideal
Wiener post-filter, offering at the same time the opportunity
to extend the approach to source separation. Finally, since it
does not employ any assumption on the noise properties and
on the structure of the noise field coherence, it is particularly
suitable to address coherent interfering sources, complement-
ing this way the traditional post-filter schemes.

The phase of the cross-spectrum (or interaural time differ-
ence) has been used for source separation using two micro-
phones in DUET [7] and in [8] in combination with source-
model strategies. Similarly, in [9, 10] a cross-spectrum phase
based post-filter for a two-microphone beamformer is pre-
sented. Analogous concepts are applied to microphone arrays
in [11], where the phase-based T-F mask is defined for sub-
bands rather than in a bin-wise manner. A slightly different
approach is investigated in [12], where the variance of the esti-
mated direction of arrival is used in the post-filter estimation.

The paper is organized as follows. Section 2 introduces
the multi-channel speech enhancement problem while Section 3
presents the proposed approach. The experimental analysis is
detailed in Section 4. Finally, Section 5 concludes the paper
with future works and final remarks.

2. Problem formulation
In the targeted multi-room scenario, while a source emits a
speech signal s(t) in a given room, in presence of background
noise and other noise sources, an interferer ir(t) is proba-
bly active in an adjacent room r. Assuming that M micro-
phones monitor the target enclosure, at each microphone m,
m = 1, . . . ,M , the received signal can be modeled as:

xm(t) = hm ∗ s(t) +
R∑
r=1

hm,r ∗ ir(t) + ηm(t) (1)
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where: hm is the RIR between the source and the micro-
phone m, hm,r is the RIR between the interferer in room r,
r = 1, . . . , R, and the microphone m and η(t) is the environ-
mental background noise. The term

∑
r hm,r ∗ir(t) models the

presence of competitive speech sources in other rooms. With-
out loss of generality we assume that a single interferer is active
in each room (possibly as a result of the linear combination be-
tween the multiple interfering sources).

2.1. Multi-channel speech enhancement

Let us approximate all interfering components as a single un-
correlated noise field:

νm(t) =

R∑
r=1

hm,r ∗ ir(t) + ηm(t). (2)

This approximation is acceptable in many cases as the lack of
line-of-sight in combination with the multi-path propagation is
expected to highly de-correlate the sound emitted by sources
outside the room. Therefore, Eq. 1 can be simplified as:

xm(t) = hm ∗ s(t) + νm(t). (3)

Applying the Short-Time Fourier Transform (STFT) and as-
suming that impulse responses are time invariant, Eq. 3 can be
formulated in the frequency domain as follows:

X(t, k) = H(k)S(k) +V(t, k), (4)

where:

X(t, k) = [X1(t, k), . . . , XM (t, k)]T , (5)

H(k) = [H1(k), . . . , HM (k)]T , (6)

V(t, k) = [V1(t, k), . . . , VM (t, k)]T , (7)

and Xm(t, k), Hm and Vm(t, k) are the STFT of xm(t), hm
and νm(t) respectively. In anechoic conditions, Hm(k) reduces
to a simple delay and attenuation [13]:

Hm(k) = Dm(k) = αme−jwkτm , (8)

where τm is the Time Difference of Arrival (TDOA) between
a generic channel m and the reference channel m = 1, while
wk is the angular frequency in radiants of the k-th bin. D(k) =

[D1(k), . . . , DM (k)]T is the array steering vector [2]. It has
been shown that the optimum multi-channel MMSE speech en-
hancement filter can be decomposed as [14, 2]:

Wopt =

[
φss

φss + φνν

]
Φ−1
ννD

DHΦ−1
ννD

, (9)

where the right-end component is an MVDR beamformer [15].
The component:

μ(t, k) =

[
φss

φss + φνν

]
(10)

in Eq. 9 is the single-channel Wiener filter. φss and φnn are
the PSD of the target signal and of the noise after the beam-
forming. The filter is often estimated assuming gaussianity of
the noise or imposing models of the noise field coherence. Fi-
nally, the estimation of the target signal is obtained as:

Y(t, k) = WH
opt(t, k)X(t, k) (11)

Figure 1: Block diagram of the proposed T-F masking scheme.

3. Proposed T-F Masking
In our target scenario, the assumption introduced above does
not always hold. In particular, the term

∑
r hm,r ∗ ir(t), al-

though rather uncorrelated, will never match the characteristics
of typical noise fields, in particular when only one interferer
is active. As a consequence, state-of-the-art solutions fail to
completely remove these interference sources. Therefore, we
introduce a novel definition of the Wiener filter based on the
multi-dimensional distance between the expected phase of the
cross-spectrum and the observed one.

The phase of the cross-spectrum between channel m and
the reference channel 1 at frequency bin k and time instant t is
defined as [16]:

e−jψm(t,k) =
Xm(t, k)X∗

1 (t, k)

|Xm(t, k)||X1(t, k)| . (12)

Similarly to Eq. 8, in anechoic and noise-free condition, Eq. 12
simplifies as a linear phase:

e−jψm(t,k) = Dm(k) = e−jwkτm , (13)

In the same direction as in [10], we define the multi-channel
phase error as [6]:

ε(t, k) = ‖r̂(t, k)− r(t, k)‖2 (14)

where r̂(t, k) is the estimated multi-channel phase:

r̂(t, k) = [e−jψ1(t,k) · · · e−jψM (t,k)] (15)

and r(t, k) is the ideal linear phase given the target source spa-
tial position:

r(t, k) = [e−j2πfkτ1 · · · e−j2πfkτM ]. (16)

Following the same principle as in [10], it makes sense to as-
sume that those T-F bins where ε(t, k) is small correspond to
bins with high SNR and low reverberation. The T-F masking
is defined as the probability that a given T-F bin belongs to the
target source given the TDOA vector τ = [τ1, . . . τM ]:

μ̂(t, k) = p (r̂(t, k)|τ ) . (17)

Assuming a multivariate gaussian distribution of the observa-
tion vectors, with frequency dependent variance, the mask can
be computed as:

μ̂(t, k) = e−ε(t,k)
2/σ2

k (18)
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where σk accounts for the frequency dependent phase variance
and has been empirically defined as:

σk =
β

(0.5 + fk)
. (19)

Basically σk counterbalances the implicit low-pass effect of the
phase error. The parameter β controls the trade-off between
distortion and interference removal. Small values of β result in
a very aggressive masking, high values of the parameter limit
the action of the soft-masking (ideally for β = ∞ there is no
masking at all).

The resulting T-F mask can be applied as post-filter after
the beamformer or on top of a traditional post-filters to further
improve the quality of the signal (as done in [17] for source
separation):

Z(t, k) = μ̂(t, k)Y(t, k) (20)

4. Experimental Analysis
We evaluated the proposed method on the DIRHA-GRID
corpus [18], a multi-microphone and multi-room simulated
database. The corpus contains a set of 225 acoustic scenes of
1-minute duration observed by 40 microphone distributed in a
real apartment. Fig. 2 shows the layout used in the experiments
with microphone positions. The star-like arrays in the Kitchen
and Livingroom (top left and bottom left rooms in Fig. 2) are
mounted on the ceiling. Each acoustic scene includes short En-
glish commands from the GRID database [19], and typical non-
speech home noises. Each acoustic event occurs randomly in
time and in space in any of the microphone-equipped rooms. In
this dataset, a single speech events occurs in the apartment at
each time, with other non-speech events (e.g., typical domestic
noises, radio, etc.) possibly overlapping in time. Background
noise consist of real noise recorded in the apartment (e.g., sound
coming inside the apartment from an open window).

Figure 2: Layout of the apartment used in the experimental
analysis.

While events may occur everywhere, the evaluation is lim-
ited to the Kitchen and the Livingroom, where the circular ceil-
ing arrays allow implementing multi-channel enhancement al-
gorithms. For each target room, the goal is to enhance speech
events occurring inside, attenuating as much as possible noise
and events occurring in other rooms. In practice, for each
room the target signal is the noise-free sequence of close-talking
GRID commands occurring inside the room. Signals are sam-
pled at 16kHz and processed in 64ms windows with 16ms step.

We consider a set of metrics directly computed on the en-
hanced signals and adopted in the CHIME evaluation cam-
paigns [20, 21] for blind source separation: Signal to Distortion
Ratio (SDR) Signal to Interference Ratio (SIR). The metrics are
computed using the “bss eval 3.0” tool. The proposed method
is compared and combined with state-of-the-art multi-channel
speech enhancement techniques: Delay-and-Sum (D&S) beam-
forming, MVDR, Zelinksi [3], McCowan [4], Lefkimmiatis [5].

4.1. Results with oracle TDOA

To better understand the potential of the proposed method, in
this first analysis we assume that oracle TDOA are available
when the target source is active. Fig. 3 reports the speech en-
hancement performance in terms of SDR and SIR of the state-
of-the-art algorithms as a function of the SDR and SIR of the
noisy signal. The post-filters of [4] and [5] are particularly ef-
fective in terms of SDR in the central range. All approaches
are effective in removing the interferers as soon as the SIR is
above 0dB and the target source is dominant, with again [4]
and [5] the best performing. Note that the SDR is particularly
low because the target signal is the close-talking (noise-free and
reverberation-free) signal.
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Figure 3: Improvement in terms of SDR and SIR provided by
the state-of-the-art algorithms.
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Figure 4: Improvement in terms of SDR and SIR provided by
the proposed algorithm with β = 1.5. SM refers to the pro-
posed masking approach.

Fig. 4 compares the performance of the proposed T-F mask-
ing when it is used as post-filter with D&S and MVDR and
when it is employed as a second post-filter in combination
with [5]. β = 1.5 in this experiment. It is interesting to
observe that the proposed approach is particularly effective in
terms of SIR, providing an improvement of approximately 10
dB over the speech enhancement scheme it is combined with.
Conversely, for low SIR cases there seems to be no benefit at
all. For what concerns SDR, there is basically no improvement
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Table 1: Improvement in dB on the full DIRHA-GRID dataset of the addressed speech enhancement algorithms. β = 1.5 in the
masking. SM refers to the proposed masking approach.

TDOA metric D&S MVDR Zelinski McCowan Lefk. D&S+SM MVDR + SM Lefk.+SM

Oracle
SDR 0.61 3.97 4.43 4.66 4.64 1.88 4.48 4.98
SIR 5.50 12.17 16.27 19.48 20.39 11.90 18.41 26.81

Estim.
SDR -0.06 3.86 4.31 4.27 4.35 0.26 4.14 4.72
SIR 1.92 11.61 15.20 17.48 18.15 5.05 14.53 23.91

when the proposed masking is combined with [4] and [5] and
only a marginal gain is observed when it is directly used as post-
filter after the MVDR and/or D&S. Table 1 summarizes the im-
provement over the noisy signals as average on the full dataset
for β = 1.5.

To conclude, Fig. 5 shows the performance as a function of
the parameter β which, controlling the phase standard deviation
in Eq. 19, determines the aggressiveness of the masking. The
figure shows that, as expected, high SIR gains can be obtained
only at the cost of a reduced SDR. Note that for high values of
β the effect of the masking is null and the performance tends
to what obtained with the baseline methods. In terms of SDR
the best performance is achieved for β = 1.5. Note that in
this analysis we consider the optimum β on average over all
conditions. Ideally, β should adapt, depending on: the amount
of noise and reverberation in the signals, the number of channels
and the accuracy of the TDOA estimation.
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Figure 5: Improvement in terms of SDR and SIR provided by
the proposed masking as a function of the parameter β.

4.2. Results with estimated TDOA
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Figure 6: Distribution of the TDOA estimation error.

We now analyze the performance of the proposed approach
when the source spatial position, and hence the TDOA, is esti-
mated using the localization algorithm described in [22], which
features an outlier elimination method that identifies and re-
moves microphones providing erroneous information. On the

DIRHA-GRID corpus, the proposed localization algorithm de-
livers 48.6% of estimates within an error of less than 50 cm
per utterance, confirming that the localization task is particu-
larly challenging. For what concerns the corresponding TDOA
estimates, which is the information actually used in the speech
enhancement algorithm, Fig. 6 shows the error distribution in
samples: note that 77% of the estimation errors are within ±1
sample.

Fig. 7 shows the enhancement performance of the proposed
method in combination with Lefkimmiatis, compared with per-
formance obtained when oracle TDOA are available. Although
a degradation is observed, the proposed enhancement scheme
still brings benefits in terms of both metrics and is robust against
noisy TDOA estimates. The bottom part of Table 1 reports the
average performance on the full data set, considering also other
solutions and combinations of methods.
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Figure 7: Enhancement performance when TDOA are automat-
ically estimated. β = 1.5 in the T-F masking.

5. Conclusions
This paper presented a novel approach for the definition of a
soft T-F masking (or post-filter) for multi-channel speech en-
hancement. Initially developed to tackle the effects of speech
events occurring in adjacent rooms in domestic contexts, the
proposed method results effective also in removing non-diffuse
interfering sources and background noise.

Future work will address the introduction of an adap-
tive phase variance in Eq. 19, which, properly modeling the
phase probability distribution based on the operational con-
ditions, would optimize the filter behavior. In this direc-
tion, further improvements could be obtained by removing the
gaussianity assumption and employing more articulated mod-
eling of the phase distribution. For instance, following recent
trends in multi-channel enhancement, neural networks could be
used [23, 24, 25]. A further limitation of the proposed approach
is the anechoic phase modeling in Eq. 13. Adopting an echoic
modeling, possibly based on some awareness of the acoustic
propagation in the monitored enclosure, could lead to better per-
formance in presence of mild to high reverberation.
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