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Abstract
General speaker-independent models have been used in non-
negative matrix factorization (NMF) based speech enhancement
algorithms for the practical applicability. And additional regula-
tion is necessary when choosing the optimal models for speech
reconstruction. In this paper, we propose a novel utilization of
deep neural network (DNN) to select the models used for sep-
arating speech from noise. Specifically, multiple local dictio-
naries are learned, whereas only one is activated for each block
in the separation step. Besides, the temporal dependencies be-
tween blocks are represented by hidden Markov model (HMM),
with which it turns out a hybrid DNN-HMM framework. The
most probable activation sequence is then solved by the Viterbi
algorithm. Experimental evaluations which focus on a speech
denoising application are carried out. The results confirm that
our proposed approach achieves better performance when com-
pared with some existing methods.

Index Terms: speech enhancement, non-negative matrix fac-
torization, deep neural network, temporal continuity

1. Introduction
Non-negative matrix factorization (NMF) [1], [2] is a power-
ful approach for solving the speech enhancement problem. The
basic idea is to decompose the source magnitude spectrum into
a basis dictionary and a weight matrix, both of which are con-
strained nonnegative. The basis dictionary conveys meaningful
dynamic patterns while the weight matrix represents the activa-
tion of different patterns along time [3].

Depending on the required training sources, NMF based
methods are categorized into three classes: supervised, semi-
supervised and unsupervised. Though the supervised methods
prove quite effective, training samples of one or more sources
are needed in advance. If no specific training data is provided,
the unsupervised approach makes for a practical solution. The
algorithm either learns dictionary online which relies on voice
activity detection [4] or uses general speaker-independent ex-
amples [5]. For the latter case, several universal speech dictio-
naries are learned in order to describe the diverse spectral char-
acteristics [6][7]. Since the local patterns should be mainly cap-
tured by some certain dictionary, block sparsity is introduced in
the separation step. Each given frame is expressed as a lin-
ear combination of few optimum spectral vectors. Universal
speech model (USM) [6] learns one separate dictionary for each
speaker. Then only the ones that best fit the observed signal are
activated. Sparsity is realized in a global sense by a penalty
term of the weight coefficients. Mixture of local dictionaries
(MLD) extends this concept [7]. It explores a more discrimina-
tive dictionary set which discovers the local convex cones. The
block sparsity is temporally relaxed and the activation decision

is made in the frame-by-frame way.
Another issue that comes up is the temporal correlations

of speech, especially with the combination of multiple spec-
tral components. Previous research reports that the utilization
of this speech feature improves the final performance [8]. One
popular practice to use the differences between the gains in ad-
jacent frames as an additional cost term [9]. While some others
suggest the usage of the Markov chain, for instance, factorial
scaled hidden Markov model (FS-HMM) [10] and non-negative
hidden Markov model (N-HMM) [11][12].

Meanwhile, the combination of NMF and an emerging
technique of deep neural network (DNN) shows promising re-
sults [13][14]. In this paper, a hybrid framework of DNN and
HMM is proposed, which furthers the idea of sparse modeling
on the basis of multiple local dictionaries. Rather than imposing
sparsity through a penalty term in the optimization criterion, we
try to learn the optimal decision process from prior data. The
motivation is related to two basic assumptions:

• The learned dictionaries well keep the local patterns so
that only one dictionary is sufficient for recovering the
spectral details of each block.

• If we know which dictionary to use, better reconstruction
performance is expected. This process is realized with
the utilization of DNN-HMM.

The paper is organised as follows. In Section 2 we give a
review of the NMF based speech enhancement algorithm. Sec-
tion3 is dedicated to our proposed method. The experiment
setup and evaluation results are presented in Section 4. And
in Section 5 we draw a concise conclusion.

2. NMF based speech enhancement
In the training phase, the short-time Fourier transform (STFT)
magnitude spectrum V ∈ RM×N

+ of each isolated source is fac-

torized into a dictionary matrix W ∈ RM×K
+ and a coefficient

matrix H ∈ RK×N
+ by solving the optimization problem

min. D(V ||WH) s.t. W,H � 0 (1)

where D is the Kullback-Leibler divergence or the square of
Euclidean distance [2]. One general solution to the problem is

W ←W �
{(

V

WH

)
H�

}
(2)

H ← H �
{
W�

(
V

WH

)}
(3)

The product operator � and division are performed in element-
wise. � stands for transposition. W,H are randomly initialized
and updated iteratively until convergence.
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The learned dictionaries WS for speech S and WN for
noise N are kept to reconstruct each source component in the
enhancement phase. Assuming the additivity in the observed
mixture, we have

V = S +N (4)

=
[
WS WN

] [HS

HN

]
(5)

If only one dictionary can be obtained, say WS , the estimation
of noise dictionary is implemented as

WN ←WN �
{(

V

WH

)
H�

N

}
(6)

When the source dictionary is of multiple spectral vectors,
USM [6] and MLD [7] enforce sparse activations by the intro-
duction of an extra penalty term Ω(H) into the optimization
criterion (1). One more step is needed to shrink the coefficients

H ← 1

1 + λ/(ε+ ‖H‖1)
H (7)

where λ controls the amount of regulation and ε is a small num-
ber for numerical stability.

3. The DNN-HMM framework
An illustration of our proposed framework is shown in Fig-
ure 1. The observed mixture is represented by HMM with la-
tent speech dictionaries as the hidden states. DNN is trained to
give prediction of state posterior probabilities. The first-order
Markov assumption further constrains the transition possibil-
ity between states. Before training, clustering is performed on
clean speech examples to generate the desired dictionary set and
provide training labels for DNN. Here the DNN-HMM part is
much different from the phoneme dependent NMF as proposed
in [15] that relies on a separate robust speech recognizer, which
itself is a challenging task.

Dictionaries for reconstructing the target source are identi-
fied with the most probable state sequence S := {st}, which is
obtained by HMM decoding given parameters {π,A,B}. π is
the initial state probability vector. A := {aij(st = j|st−1 =
i) | ∀i, j} denotes the transition matrix and B indicates the
emission density matrix. Detailed processing procedures are
presented in the following subsections.

����
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DNN

Figure 1: Illustration of the proposed framework.
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Figure 2: An example of state transition matrix between blocks
for a total cluster number of 20.

3.1. Clustering

Given clean training source data, the purpose of clustering is
to discover the diverse spectral characteristics. Spectral vectors
in the same cluster are close in the space manifold and tend to
possess similar structure. Here k-means clustering is used for its
simplicity while other methods are also feasible. Spectrogram
similarity is measured by the Euclidian Distance. One dictio-
nary for each cluster is learned using equation (2)(3). Suppose
the cluster number is C, we have C local dictionaries in total.

Considering the dictionary as a latent state of each clus-
ter and labeling each spectrum block with its cluster number,
a first-order HMM is applied to describe the signal. The state
transition probability is naturally calculated from all the training
samples

aij(st = j|st−1 = i) =

∑
t(st = j|st−1 = i)∑

t(st−1 = i)
(8)

where st = i means that block t belongs to the ith cluster,
and i, j ∈ [1, . . . , C]. An example of the transition matrix is
depicted in Figure 2. Temporal correlations show up as a ten-
dency that consecutive blocks stay in the same state, which is
proved by the larger diagonal elements in the matrix.

The prior probability of each state is

π(s0 = i) =

∑
t(st = i)

T
(9)

where T is the number of total training blocks.

3.2. Deep neural network

The clean speech is mixed with different kinds of noise to pro-
vide prior training data for DNN. The network is supposed to
classify each mixture block into the right speech cluster. Train-
ing labels are binary vectors that use the 1-of-C coding scheme
with all elements being zeros except for element c. Multiclass
cross-entropy criterion is chosen as the cost function

Er =
∑

p log(p) + (1− p) log(1− p) (10)

The network architecture consists of L hidden layers and
all layers are fully connected. ReLU activation components are
used for the hidden layers and Softmax component is used for
the output layer.

Each layer is first pre-trained as a restricted Boltzman ma-
chine (RBM). Back-propagation technique of conjugate gradi-
ent descent (CGD) is then applied for fine tuning the network.
The error on a validation set is checked for choosing the model
of the best performance.

During testing, the outputs of DNN are interpreted as the
probabilities of one block belonging to each states.
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3.3. Viterbi decoding

Provided with the above parameters, the Viterbi algorithm is
applied to find a most likely state sequence that maximizes the
function

P (V ,S) � max
S

π(s0)
∏
t

a(st|st−1)p(vt|st) (11)

where V := {vt} is the observation. The emission probability
is obtained using the Bayes’s theorem

p(vt|st) = p(st|vt)p(vt)

p(st)
(12)

in which the posterior density comes from DNN and the denom-
inator is exactly the state prior probability. The final states are
retrieved by back-tracking.

3.4. Reconstruction

The dictionaries W = [W1, W2, ...,Wt] for speech reconstruc-
tion is solely decided by the state sequence. Meanwhile, there
are two ways to utilize this information. We can either solve
the separation problem in an online mode using the one speech
dictionary for each block, or settle it in a batch mode by con-
catenating the C individual dictionaries together and activating
just the right coefficients. We use the second mode in latter
experiments for its better performance. After random initializa-
tion of HS , the other coefficients are set to be zeros and remain
zeros throughout except for the ones corresponding to the right
dictionary. So no extra regularization is needed in the process.

The ultimate estimation of speech spectrogram is computed
by a Wiener-type filtering [5]

S̃ =
WSHS

WSHS +WNHN
� V (13)

The time-domain signal is recovered by inverse STFT using the
phase of the mixture and overlap-and-add method.

4. Evaluation
4.1. Experiment setup

Our proposed approach is tested in a speech denosing applica-
tion. The experimental implementations largely follow that of
USM [6] and MLD [7] for comparison. All signals are sam-
pled at 16 kHz. STFT is performed using 1024 samples with
75% overlap. 20 male speakers (10 sentences each) are ran-
domly chosen from the training set of TIMIT corpus to pro-
vide general data for learning speech dictionaries. Each dic-
tionary holds RS = 10 basis vectors. The number of clus-
ters is C = 20. Clean files of 5 speakers from the test set
are mixed with 10 non-stationary noise signals, namely {bird,
casino, cicadas, computer keyboard, eating chips, frogs, jungle,
machine guns, motorcycles, ocean} [16], at 0dB signal-to-noise
ratio (SNR), which makes a total of 50 sentences for testing.

The parameters of DNN are L = 2 hidden layers each with
512 nodes. The logarithm magnitudes of one single frame is
used as input, so the feature size turns out 513. Noise segments
different from testing are mixed with clean speech, which re-
sults in 2000 training examples. 20% files are selected as the
validation set.

In the unsupervised scenario, we apply the universal speech
dictionary while the noise dictionary is learned from the mix-
ture. The size of the noise dictionary is chosen depending on its
type [16], i.e. one of {20, 10, 200, 20, 20, 10, 20, 10, 10, 10}.

The BSS toolbox [17] and the perceptual evaluation of
speech quality (PESQ) [18] are used for quality measurement.
PESQ is highly correlated to human speech quality scores while
signal-to-distortion ratio (SDR) serves as an overall separation
performance metric.

4.2. Results and analysis

We compare the proposed method with the classical Log-
MMSE algorithm [19], USM and MLD. The results are shown
in Table 1. The USM and MLD algorithms are tuned to best per-
formance based on the setup in respective references. DNN-D
refers to the case that we take the state of maximum probability
as the final state and leave out the Viterbi search.

Table 1: SDR(dB) and PESQ (bottom) scores of different ap-
proaches averaged on all test sentences.

Noisy [19] USM MLD DNN-D Proposed

0.00 3.37 6.42 8.28 8.94 9.07

1.81 1.90 1.92 2.17 2.36 2.38

The usage of DNN indicates a distinct improvement over
baseline methods. The increment in SDR over MLD is about
0.7 dB and 0.19 in PESQ. The consideration of temporal conti-
nuity results in a further enhancement and scores as high as 9.07
dB. Note that the dictionaries in MLD are different from that of
DNN-D, though both involve some clustering techniques. The
difference does not contribute to its final performance when we
replace the dictionary set of MLD.

The achievement of our proposed approach largely lies in
the introduced prior information by deep neural network. With
the same types of noise for training, DNN is able to recognize
the right speech cluster from the mixture. Spectral details are
then recovered by the corresponding dictionary. Rather than
imposing sparsity through a penalty term, the proposed method
basically decides the optimal dictionaries to be activated. The
point is verified from another perspective by an oracle test, in
which the mixtures for training the network are put to test. Since
we already know the true speech labels, oracle results are ob-
tained. The SDR averaged on all the 200× 10 files is 9.37 dB.
This serves as an important reference. Somehow, DNN suffers
certain performance loss in mismatched test conditions.

To illustrate the effects of temporal constraints, the spec-
trograms of one test sentence are presented in Figure 3. The
speech is corrupted with computer keyboard noise. As is shown
by this figure, the utilization of HMM produces more smooth
spectrum. In the last subgraph, less fluctuations in dictionary
states are observed between adjacent frames of the proposed
method than of DNN-D. In this way, there is a reduced distor-
tion in speech active regions.

Next, we further discuss our proposed method in two as-
pects, of which the results are in Table 2.

Table 2: Performance comparison in the semi-supervised and
strict unsupervised case. SDR(dB)

USM MLD DNN-D Proposed

semi- 10.37 10.31 10.50 10.56
un- 6.42 8.28 7.58 7.71

Semi-supervised (semi-): Since we have got noise samples
for training the neural network, the noise dictionary could be
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Figure 3: Spectrograms of noisy signal at 0dB SNR (a), of clean
signal (b) , of DNN-D output (c) and of the proposed method
(d). The bottom graph (e) records the predicted state/dictionary
labels for each frame. The blue line corresponds to DNN-D and
the red line refers to the DNN-HMM based method.

directly learned from the sample segments, while the third-part
speech models remain unchanged. This is compared to semi-
supervised separation of the baseline algorithms. All methods
are adjusted with regard to iteration and the size of noise dictio-
nary for optimal performance. The DNN-D reaches 10.50 dB
and the DNN-HMM based approach scores 10.56 dB, both of
which are slightly better than the baseline.

Strict unsupervised (un-): No noise samples of the test data
are available beforehand. Instead, general noises are exploited
to train the network, which confirms with a strict unsupervised
setup. We choose the 100 nonspeech environmental sounds set
[20] for its wide coverage and the difficulty of our evaluation
task. Unexpectedly, there is a dramatic drop of about 1.4 dB
in the scores. Though it is still 1.3 dB better than USM, for
which the discriminative dictionaries might be the main reason.
We conclude that in the unmatched noise conditions misclassi-
fication disturbs the final outcome. Nevertheless, supplemen-
tary experiments see better results with increased noise types
for training.

5. Conclusions
An endeavour has been made to integrate the prior knowledge
learned from prior data into NMF based speech enhancement
algorithms. The supervised technique of DNN is employed for
the optimal model decision in the case of multiple alternative
dictionaries. With the combination of HMM, the consequent
hybrid framework takes both the spectral dynamics and the tem-
poral continuity of speech into consideration. Its effectiveness
is confirmed in a certain speech denoising experiment.

We note that the generalization of the neural network part

remains a issue. And future work also includes the exploration
of representative dictionary set, long temporal dependencies
and relaxation of using one dictionary per block.
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