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Abstract
Post-processing methods can be used in mobile communica-
tions to improve the intelligibility of speech in adverse near-end
background noise conditions. Generally, it is assumed that the
input of the post-processing contains quantization noise only,
that is to say, no far-end noise is present. However, this as-
sumption is not entirely realistic. Therefore, the effect of far-
end noise with and without noise reduction on the performance
of three post-processing methods is studied in this investigation.
The performance evaluation is done using subjective intelligi-
bility and quality tests in several far-end and near-end noise con-
ditions. The results suggest that although the noise reduction
generally improves performance in stationary far-end noise, the
noise reduction does not improve intelligibility in unstationary
far-end noise conditions but has a positive impact on perceptual
quality for some of the post-processing methods.
Index Terms: post-processing, intelligibility enhancement,
word-error rate, far-end noise, spectral subtraction

1. Introduction
In mobile communications, post-processing can be used to en-
hance the intelligibility of speech in the presence of background
noise in the listener’s environment. This is referred to as the
near-end noise scenario and it is usually assumed that the de-
coded speech is distorted by quantization noise only. This
means that the sending side of the telephone connection, re-
ferred to as the far-end side, is assumed to be free from back-
ground noise. In this scenario, the post-processing aims to en-
hance the acoustic cues in the clean speech signal to improve its
intelligibility over the background noise in the near-end.

Several methods of intelligibility enhancement have been
proposed for the near-end condition. They are based, for ex-
ample, on optimizing objective measures, such as the speech
intelligibility index (SII) [1, 2, 3] and the glimpse propor-
tion [4], or re-allocating speech energy with simple high-pass
filtering [5, 6]. It is worth noting that most of these techniques
have been developed by using, in one form or another, models
of human speech perception. Methods to improve intelligibil-
ity based on modeling the human speech production mechanism
have also been proposed. For instance, the Lombard effect [7]
has been used in previous post-processing studies [8, 9, 10], and
recently, Gaussian mixture models (GMMs) were successfully
used in a normal-to-Lombard mapping to improve the intelligi-
bility of telephone speech [11, 12].

The assumption of clean far-end conditions that has been
made in most of the intelligibility enhancement studies is un-
realistic. If the input signal contains noise, the post-processing
might modify and enhance the noise along with the signal which
might result in quality and intelligibility degradation. This was

observed in [13], when studying intelligibility using an objec-
tive intelligibility metric, the extended speech intelligibility in-
dex (eSII). One solution is to combine a pre-processing stage
suppressing the far-end noise in the sending device with the
post-processing stage in the receiving device. Although, noise
reduction can increase the perceptual quality of speech in sta-
tionary noise conditions [14], it can also produce artifacts to
the processed signal [15] which might further degrade the post-
processed speech. The authors of [13] also combined the post-
processing method with noise reduction and demonstrated in-
creased eSII scores with far-end noise. However, only station-
ary speech-shaped noise was used in the far-end and the objec-
tive results were not verified using subjective tests.

This study investigates the effects of having corrupted
speech inputs to post-processing methods at the receiving end
of the speech transmission system. In the analyzed scenario,
the corruption in the input of the post-processing algorithms
results from far-end environmental noise which is either pro-
cessed or not processed with a noise reduction algorithm at the
transmitting end. The subjective performance evaluation con-
sists of an intelligibility test with two levels of near-end noise
as well as a quality test, both conducted with several types of
far-end noise. Three different post-processing methods are in-
cluded in the evaluation together with one spectral subtraction
method that can be used as a pre-processing step to reduce the
far-end noise. All the evaluations are conducted using narrow-
band telephone speech.

2. Methods
Three different types of algorithms were used for post-
processing: formant enhancement with fixed high-pass filtering
(FE), Lombard-tilt modeling using GMMs (LTM) and dynamic
range compression (DRC). All of the algorithms were operated
under the normal assumption of clean speech input, that is to
say they were not adapted to the presence of the far-end noise
in any way. In addition to the post-processing methods, spectral
subtraction (SS) was used in the noisy far-end conditions as a
pre-processing stage to reduce the noise. The different stages
of signal processing and the use of the different algorithms are
depicted in Fig. 1. All of the algorithms are described in more
detail in the following.

2.1. Formant enhancement (FE)

The FE method was introduced by Hall and Flanagan [5]. The
algorithm utilizes a fixed high-pass filter which was derived by
inverting the average amplitudes of the first two formants mea-
sured from adult male speakers. The resulting filter attenuates
the frequency range around the first formant with maximum
attenuation near 360 Hz. The filter was originally intended
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Figure 1: An illustration of how the far-end and near-end noises are added to the speech signal and where the different processing steps
are done. The spectral subtraction (SS) is used before the telephone channel whereas the post-processing methods (FE, LTM and DRC)
are utilized after the speech has been received from the channel and decoded. In conditions where SS = 0, the noise reduction stage is
bypassed. Similarly, in the unprocessed (UN) condition, the post-processing step is omitted.

for wideband speech with a 22.05-kHz sampling frequency but
it was modified for narrowband speech using the z transform
given in the original paper [5].

2.2. Lombard-tilt modeling (LTM)

The LTM method, first introduced in [11], aims to map the spec-
tral tilt from normal speech to that of Lombard speech using
GMMs. The normal-to-Lombard mapping is trained using read
speech data in Finnish from three male and three female speak-
ers. The data contains parallel recordings of normal and Lom-
bard speech, that is to say, each sentence has been produced in
both conditions by each speaker. To find corresponding normal
and Lombard frames, the samples are aligned using dynamic
time warping (DTW) [16]. As the Lombard effect is not con-
sistent throughout the recordings, the data selection scheme in-
troduced in [17] was used to select training data. The trained
mapping is then utilized as a part of a post-processing algorithm
which has been previously used in [11].

First, the spectral tilt, parametrized as 1/Ap(z), is esti-
mated with stabilized weighted linear prediction [18], trans-
formed to the LSF representation and mapped with the trained
model. After the mapping, the stability of the output filter is
checked and if necessary, the roots outside of the unit circle are
replaced with their mirror-image pairs inside the unit circle. The
speech frame is then filtered with Ap(z)/A

′
p(z) which removes

the original spectral tilt and replaces it with the Lombard-like
spectral tilt. Finally, the energy of the filtered frame is equal-
ized to the level of the unprocessed frame with the adaptive gain
control (AGC) used in the AMR codec [19].

2.3. Dynamic range compression (DRC)

The DRC method utilized is based on [8]. An slightly modi-
fied version optimized to noisy far-end conditions was proposed
in [13] but this was not utilized in the current study. The com-
pression is done in two stages: a dynamic stage and a static
stage. In the dynamic stage, the estimated envelope of the signal
is smoothed utilizing attack and release time constants adapted
to the lower sampling rate of 8 kHz from 16 kHz using the def-
inition given in [20]. In the static stage, a time varying gain is
determined based on the decibel value of the smoothed enve-
lope and the input-output envelope characteristic function. The
0 dB reference level needed to determine the decibel value of
the envelope was set to 30% of the maximum envelope of the
speech database used in the current study.

In their original study [8], the authors use a sentence level
energy normalization after the compression. For the purposes
of the current study, the method was adapted to real-time pro-
cessing by implementing it in a frame-based form. Originally,
frame-based processing was used only to compute the envelope
of the original sample with different frame lengths for male and

female speakers. The frame length used in this study was se-
lected as a compromise between these and was set to 15 ms.

2.4. Spectral subtraction (SS)

The SS algorithm is based on Wiener filtering [15] and the
noise power is estimated using the method introduced in [21].
The implementation was done using the Matlab toolbox Voice-
box [22]. Several parameter options were evaluated informally
and finally, the Wiener filter method was found to provide the
best quality output speech in the conditions that were used in
the study. The frame length for the noise reduction was 16 ms.

3. Subjective evaluation
The post-processing methods (FE, LTM and DRC) were eval-
uated in comparison to unprocessed speech (UN) in different
combinations of far-end and near-end noise conditions with and
without spectral subtraction using two types of subjective tests.
The first test was a word-error rate (WER) test evaluating the
intelligibility of the methods in the different conditions. The
second test was a pair comparison test on quality.

An overall view of the different conditions used for pro-
cessing can be seen in Fig. 1. Three far-end noise conditions
were evaluated: clean condition as well as two noisy conditions
with car noise and factory noise [23]. The levels of the far-end
noise were selected outside of the normal signal-to-noise ratio
(SNR) range in which they are tested [24]. This was done in or-
der to focus on challenging conditions where the performance
of the noise reduction deteriorates. Therefore, for the car noise
the SNR was set to 0 dB and for the more difficult, unstation-
ary factory noise to 5 dB. The far-end noise conditions were the
same in both subjective tests.

In order to restrict the number of conditions in the evalua-
tion, only one type of near-end noise, stationary car noise, was
used. However, in the WER test, two different SNR levels, char-
acterized perceptually as moderate and severe, were utilized.
For clean far-end conditions, the SNRs for the two conditions
were set to −5 dB (moderate) and −10 dB (severe), whereas
for the noisy far-end conditions, perceptually similar noise lev-
els were achieved when the SNR levels were 0 dB (moderate)
and −5 dB (severe). In the pair comparison test, only one near-
end noise level was used with SNR 5 dB. The near-end SNR
was increased from the WER test to obtain conditions where
the possible artifacts caused by the different stages of process-
ing would not be entirely masked but the level of noise would
still merit the use of intelligibility enhancement to facilitate the
understanding of the samples.

The Finnish speech material used in the test consisted of
phonetically balanced sentence material from two male and two
female speakers [25]. The sentences used in the material are
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Figure 2: The mean word-error rates (WERs) and the standard errors of the mean in all test conditions for both male and female speakers.
The post-processing methods under comparison were unprocessed speech (UN), dynamic range compression (DRC), Lombard-tilt
modelling (LTM) and the formant equalizing postfilter (FE). Spectral subtraction was used as a pre-processing step in the cases marked
with SS=1. On the top row, the clean far-end noise condition is shown. The far-end conditions with car and factory noise are depicted in
the middle and bottom rows, respectively. The moderate and severe near-end noise conditions are shown on the left and right column,
respectively.

semantically meaningful and have an average duration of ap-
proximately 2 seconds. All of the processing was done using
the guidelines given in [26] for narrowband speech. In the
conditions with far-end noise, both the speech and noise file
were separately filtered with the MSIN filter [27] at 16 kHz,
downsampled to 8 kHz and adjusted to the desired level using
SV56 [28]. In practice, the speech level was set to −26 dBov
and the noise level was corrected based on the desired SNR.
After this, the far-end noise and speech were added together
in the noisy far-end conditions. After this, spectral subtraction
was used where appropriate. In the noisy far-end conditions, all
the post-processing methods as well as UN were evaluated both
with a pre-processing step consisting of noise suppression and
without it. In the clean far-end condition, no noise was added
to the speech. The far-end signal was then encoded and de-
coded using the adaptive multi-rate (AMR) narrowband codec
with 12.2-kbit/s rate [29, 19]. After the decoding, the samples
were processed using one of the post-processing methods under
comparison except in the unprocessed condition. Based on the
desired near-end SNR, the level of the near-end noise signal was
adjusted and the noise signal was then added to the processed
speech signal. After adding the noise, the signals were again
normalized to −26 dBov using SV56 [28].

For both the WER test and the pair comparison test, eleven
normal-hearing listeners took part. All subjects were native or
bilingual speakers of Finnish except for one listener who was
non-native but spoke fluent Finnish. In the WER test, the aver-
age age of the listeners was 24 years whereas in the pair com-
parison test the average was 27 years. The listeners were either
university staff or students and they were paid for their partici-

pation. The tests took place in a sound-proofed listening booth
using Sennheiser HD 650 headphones. Both subjective tests
were divided into three parts according to the far-end noise con-
dition with a short break in between. In the WER test, a short
practice session preceded each part to acquaint the listeners to
the change in the background noise. For the pair comparison, a
single practice session was completed before the beginning of
the test. The A-weighted sound pressure level was set to ap-
proximately 70 dB and kept constant throughout the tests.

In the WER test, each noisy sample was played only once
after which the subjects typed the sentence on the computer.
The percentage of correct words was computed by scoring the
stems and suffices of inflected words separately after obvious
spelling errors had been manually corrected. In the pair com-
parison test, the listeners were able to freely listen to two sam-
ples, A and B, and were asked ”Which sample is of better qual-
ity?”. They were asked to choose one of the options: A, B or No
difference and instructed to select No difference if they had no
preference even if they heard a difference between the samples.

3.1. Results

For the pair comparison test, a summary score on quality was
computed for each method by averaging the number of compar-
isons the method was preferred in each condition per listener.
The results were aggregated across male and female speakers.
For both the WER and the pair comparison test, the statistical
analysis of the scores was divided into three separate parts ac-
cording to the far-end noise condition. The WER scores were
analyzed using analysis of variance (ANOVA) with the method
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Figure 3: The means and the standard errors of the mean for the summary scores on quality in all test conditions. The post-processing
methods under comparison were unprocessed speech (UN), dynamic range compression (DRC), Lombard-tilt modelling (LTM) and the
formant equalizing postfilter (FE). Spectral subtraction was used as a pre-processing step in the cases marked with SS=1. The far-end
conditions without noise and in car and factory noise are shown from left to right.

(UN, DRC, LTM, FE), the near-end noise level (moderate, se-
vere) and the speaker gender (male, female) as fixed factors and
the listener as a random factor. The summary scores for qual-
ity were analyzed using ANOVA with the method (UN, DRC,
LTM, FE) as a fixed factor and the listener as a random fac-
tor. For both the WER and the pair comparison scores, an addi-
tional fixed factor in the analysis was the use of spectral subtrac-
tion (SS = 0, SS = 1) in the far-end. The data was checked for
sphericity and the Greenhouse-Geisser correction was applied if
needed. Post hocs were conducted using Tukey’s test with 95%
significance level. In the following, all the relevant results from
the statistical analysis significant with 95% level are reported.

The intelligibility scores in the clean far-end condition were
affected by the near-end noise level [F (1, 10) = 106.25],
the method [F (1.94, 19.50) = 18.58], and the speaker
[F (1, 10) = 21.60] as well as the interaction between the
method and the speaker [F (3, 30) = 3.61]. Overall, FE and
LTM received lower error rates than UN and DRC. On closer
inspection, the difference between the methods was significant
only with female speakers. In the far-end noise condition with
car noise, the analysis showed that the near-end noise level
[F (1, 10) = 64.71], the method [F (3, 30) = 10.34], the
speaker [F (1, 10) = 28.05], and the use of spectral subtrac-
tion [F (1, 10) = 112.71] as well as the interaction between
the near-end noise level and the use of spectral subtraction
[F (1, 10) = 10.56] had a significant effect on intelligibility.
Overall, FE and LTM received lower error rates than UN and
DRC. The intelligibility scores were on average improved by
the use of spectral subtraction. This trend was observed in both
moderate and severe near-end noise. In the far-end noise con-
dition with factory noise, the analysis showed that the near-end
noise level [F (1, 10) = 44.87] and the speaker [F (1, 10) =
34.03] as well as the interactions between the near-end noise
level and the speaker [F (1, 10) = 16.88] and between the
speaker and the use of spectral subtraction [F (1, 10) = 6.89]
had a significant effect on WER scores. All the findings are
illustrated in Fig. 2.

The summary scores on quality, in the clean far-end noise
condition, were affected by the method [F (1.34, 13.40) =
4.89]. Overall, FE and LTM were rated higher than DRC and
UN. In the far-end condition with car noise, the quality scores
were affected by the method [F (1.63, 16.34) = 6.51], the use
of spectral subtraction [F (1, 10) = 90.78] as well as the in-
teraction between the method and the use of spectral subtrac-
tion [F (3, 30) = 9.78]. Overall, LTM and FE were rated
lower than UN and the samples with spectral subtraction re-

ceived higher scores than the ones without it. Closer inspec-
tion of the interaction term revealed that both DRC and UN
were rated higher in quality than LTM and FE when spec-
tral subtraction was not used but this difference was not ob-
served when spectral subtraction was used. In the far-end con-
dition with factory noise, the summary score was affected by the
method [F (1.85, 18.46) = 11.98], the use of spectral subtrac-
tion [F (1, 10) = 226.01] and by the interaction of the method
and the use of spectral subtraction [F (1.92, 19.15) = 3.69].
Overall, FE was rated lower than the other methods and closer
inspection of the interaction term showed that this difference
was seen when spectral subtraction was not used. On average,
conditions with spectral subtraction were rated higher than con-
ditions without it. These observations are visualized in Fig. 3.

4. Discussion
The performance of three post-processing methods was com-
pared to unprocessed speech in the presence of both near-end
and far-end noise with and without spectral subtraction. The
evaluation contained both a WER test and a pair comparison
test on quality with different far-end noise conditions.

In the clean far-end condition, two post-processing meth-
ods, FE and LTM, performed better in terms of WER com-
pared to UN and DRC. This difference was also observed with
car noise in the far-end whereas with factory noise no signifi-
cant differences between the methods were found. In car noise,
the spectral subtraction improved the intelligibility scores but
in factory noise, the SS has no significant impact, although it
even tends to increase the error rates slightly in some cases. In
the far-end condition with car noise, the improvement in WER
with the spectral subtraction is relatively small in some condi-
tions with FE and LTM, which were the most efficient post-
processing techniques in clean far-end conditions. This sug-
gests that spectral subtraction is not necessarily beneficial in
all cases even in stationary far-end noise. However, the use of
SS significantly improved the quality scores compared to the
conditions without SS. This was especially notable for FE and
LTM, which were rated lower than UN and DRC with SS = 0
in the noisy far-end conditions but received similar scores when
spectral subtraction was used.
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