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Abstract
Intelligibility of speech in adverse near-end noise conditions
can be enhanced with post-processing. Recently, a post-
processing method based on statistical mapping of the spectral
tilt of normal speech to that of Lombard speech was proposed.
However, previous intelligibility improvement studies utilizing
Lombard speech have mainly gathered data from read sentences
which might result in a less pronounced Lombard effect. Hav-
ing a mild Lombard effect in the training data weakens the sta-
tistical normal-to-Lombard mapping of the spectral tilt which
in turn deteriorates performance of intelligibility enhancement.
Therefore, a database containing both conversational and read
Lombard speech was recorded in several background noise con-
ditions in this study. Statistical models for normal-to-Lombard
mapping of the spectral tilt were then trained using the obtained
conversational and read speech data and evaluated using an ob-
jective intelligibility metric. The results suggest that the conver-
sational data contains a more pronounced Lombard effect and
could be used to obtain better statistical models for intelligibil-
ity enhancement.
Index Terms: Lombard speech, conversational recording, in-
telligibility enhancement, Gaussian mixture model

1. Introduction
In mobile communications, the quality and intelligibility of de-
graded speech can be enhanced with post-processing. This
degradation can be the result of quantization or acoustical back-
ground noise on the sending or receiving side of the connection,
referred to as the far-end and the near-end noise scenario, re-
spectively. In this study, the decoded speech is assumed to con-
tain only quantization noise and the noise disrupting the com-
munication is in the listener’s environment. In this scenario, the
post-processing is used to enhance the acoustic cues in the clean
speech to improve its intelligibility over the background noise.

Several intelligibility enhancement methods have been pro-
posed previously for the near-end noise scenario. They are
based, for example, on optimizing objective measures [1, 2,
3, 4] or re-allocating speech energy with simple high-pass fil-
tering [5, 6]. While most of these techniques are based on
models of human speech perception, methods based on mod-
eling the human speech production mechanism are not as com-
mon. It is well known that speakers tend to change, for ex-
ample, the spectral characteristics of their speech when talking
in noisy conditions. An example of this is the Lombard effect
which refers to the modification of speaking style due to envi-
ronmental noise [7]. Natural Lombard speech has been shown
to be more intelligible than normal speech and this has been
attributed to several factors, such as flattening of the spectral
tilt, slower speaking rate, and increased vocal intensity [8, 9].

The Lombard effect has been taken advantage of in some previ-
ous post-processing studies [10, 11, 12], and recently, Gaussian
mixture models (GMMs) were used in a normal-to-Lombard
mapping successfully to improve the intelligibility of telephone
speech [13, 14].

Previous intelligibility enhancement studies utilizing the
Lombard effect are generally based on speech recordings in
which the speaker reads pre-selected sentences in noise [12, 13].
This scenario is different from a realistic speech communication
situation between two talkers in noisy conditions in which both
interlocutors spontaneously adjust their speaking style to tackle
the disturbance caused by noise to deliver the spoken message to
the other partner. In other words, the importance of person-to-
person communication, the concept referred to as communica-
tive interaction [15] or intent [16], has unfortunately been ig-
nored in data collection in previous intelligibility enhancement
studies. This is regrettable because some studies [15, 17, 18]
have shown that the interaction seems to evoke a stronger Lom-
bard effect compared to reading as observed, for example, in
increased vocal intensity [15]. From the point of view of ma-
chine learning, having a more pronounced Lombard effect in
the training data might lead to statistical models better suited
for post-processing in severe background noise conditions. Pre-
viously, different kind of data selection techniques have been
used in an effort to obtain representative Lombard data [19].

In this study, a database containing both conversational and
read Lombard speech is recorded in several background noise
conditions. Both the obtained conversational and read speech
data are then used to train statistical models for normal-to-
Lombard mapping. Finally, the models are used in a post-
processing context and evaluated using an objective intelligi-
bility metric, the speech intelligibility index [20].

2. Lombard recordings
A database of conversational and read Lombard speech in
several different noise conditions was recorded from several
Finnish speakers. Each recording session consisted of two parts:
in the first part, realistic communication tasks were used to cre-
ate an interaction between two subjects. Each pair of inter-
locutors completed several different tasks, one for each back-
ground noise condition. In the second part, each individual read
through a short text once in each background noise condition.

To obtain conversational speech data, a task evoking inter-
action between subjects is needed. Several different kinds of
tasks have been proposed in previous studies, such as, interac-
tive map drawing [21, 15] and locating the differences in pic-
tures [22, 16]. In the current study, realistic telephone conver-
sations were generated with communication tasks designed for
conversational quality evaluation of telephone connections [23].
In the tasks, one of the subjects is the caller and the other one is
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Figure 1: The test setup of the conversational tasks in the ane-
choic chamber. The controller of the experiment was seated
where the picture was taken from.

an agent in a service, such as travel agency or library. Each sub-
ject has a task sheet, which, for the caller, specifies the service
he/she is asking for, and for the agent tells what kind of service
options are available. Each task sheet is missing information
that the other task sheet contains, hence generating spontaneous
interaction to exchange the necessary information. A part of
the tasks suggested in the standard have been previously trans-
lated to Finnish for the evaluation of bandwidth extension [24]
and these translated versions were adapted for the current study.
Altogether six conversation tasks were used: one for a practice
session and five others for different background noise condi-
tions. The tasks included buying train tickets, reserving plane
tickets, booking seats for the theater, buying tickets to a musical
and reserving books from a library. The time to complete one
task varied around 3 minutes. In the second part of the data col-
lection, participants read a text (weather forecast) of 90 words
which took approximately one minute.

Altogether five background noise conditions were used for
each pair of interlocutors: silence, stationary car noise [25]
as well as highly unstationary pub noise [25], both with A-
weighted sound pressure levels (SPL) of approximately 65 dB
and 80 dB. Previous studies describing the collection of Lom-
bard data were used as reference for selecting the appropriate
noise levels [8, 26, 27]. The presentation order of the back-
ground noises was kept fixed for all pairs of subjects. The
noise was played to the subjects using Sennheiser HD 595 head-
phones that were set to the same sound pressure level. The open
headphones also allowed the subjects to hear their own voice
to some extent. Both of the subjects had a headset microphone
(DPA 4065-BL and DPA 4066-B) as well as a stand microphone
(G.R.A.S. 46AF 1/2” free-field microphone) that were used for
recording. The recording for each participant was done on two
channels with different amplifications in order to avoid clipping
of the recorded signals. The signal from the standing micro-
phone was routed to the other subjects headphones so that the
resulting SPL in the ear was approximately 55 dBA in silence.
All the mixing was done using a MOTU Ultralite-mk3 Hybrid
audio interface that was connected to a computer via USB. The
signals were recorded at 48-kHz sampling frequency using the
REAPER software. In addition to the speech data, a calibration
signal, a 1-kHz sine tone, was recorded using all the micro-
phones so that the speech SPL could be determined afterwards
from the digital signals.

Conversational Read
1 2 3 4 5 1 2 3 4 5

M 77 84 86 85 87 69 72 73 72 73
F 80 86 86 86 87 71 73 74 73 75

Table 1: The average A-weighted sound pressure levels (in dB)
computed from the two male (M) and two female (F) speakers
analyzed in the current study. The values are calculated for both
conversational and read speech in all the background noise con-
ditions (1 = silence, 2 = moderate car, 3 = severe car, 4 = mod-
erate pub, 5 = severe pub).

Ten pairs of subjects took part in the recordings, altogether
10 male and 10 female speakers. All of the participants were
either native or bilingual speakers of Finnish. The average age
of the speakers was 23 years and they were either university
students or staff. The subjects were paid for their participation.
The recordings were conducted in an anechoic chamber where
the subjects were seated on the opposite sides of the chamber
as shown in Fig. 1. In between them was a curtain blocking
the view so the subjects could not communicate using gestures.
Each of the participants had a wooden clip board that they could
use to write the required information to their task sheets. In
the beginning of the recording session, the participants were
instructed on the recording procedure and on how to complete
the tasks. First, a practice task was completed with silence in the
background followed by the other five tasks in different noise
conditions. Between each task, the subjects were able to relax,
drink water and study the task sheet for the next task. After
completing the conversational tasks, each participant conducted
the text reading part while the other one waited outside of the
anechoic chamber.

For this preliminary study, four speakers (two male, two
female) were selected from the recorded dataset. The average
A-weighted SPL values computed from the selected speakers
in all the different background noise conditions are shown in
Table 1. The average values in the conversational conditions
are generally higher than in the read conditions and the increase
in SPL from speech produced in silence to speech produced in
noise is slightly larger in the conversational data.

3. Normal-to-Lombard conversion
The main motivation of recording conversational Lombard
speech was to obtain more representative speech data for train-
ing a normal-to-Lombard mapping compared to read speech. In
order to verify this, Gaussian mixture models for converting the
spectral tilt of normal speech to that of Lombard speech were
trained using both the conversational and read data. The entire
process was first introduced in [13]. Although the recordings
contain Lombard speech data in four noisy conditions, only one
of them, the severe pub noise condition, was selected for GMM
training in the present study. Speech produced in this condi-
tion will simply be referred to as Lombard speech (L), whereas
speech produced with silence in the background is referred to
as normal speech (N). As mentioned previously, a subset of two
male and two female speakers was used for training the models
in the current investigation.

First, both the conversational and the read recordings were
divided into smaller parts and the unnecessary silences were re-
moved. The conversational recordings contain also some non-
speech sounds that are often used to indicate, for instance, hes-
itation or agreement. Most of these were also removed at the
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Figure 2: Average spectral tilt for both conversational and read
normal (N) and Lombard (L) speech for a male speaker. The
spectral tilt has been computed from all the voiced frames using
stabilized-weighted linear prediction.
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Figure 3: The flowchart of the post-processing algorithm for
voiced frames. The incoming speech frame is denoted by sNB

and the processed speech frame by sOUT.

pre-processing stage. After this, all the speech data was down-
sampled from 48 kHz to 16 kHz. Because the main interest of
the current study was the effects of spectral tilt on intelligibil-
ity, all the level differences between different types of speech
were removed. This was achieved by equalizing the signals
to −26 dBov using SV56 [28, 29]. After this, all the speech
samples were downsampled to 8 kHz. The read normal and
Lombard datasets contain parallel recordings, that is to say, the
same sentences were produced by each speaker using normal
and Lombard speaking styles. To find the corresponding normal
and Lombard frames from the read data, dynamic time warping
(DTW) [30] was used with 20-ms frames. After this, the voiced
frames were selected using both the energy of the frame as well
as the gradient-index measure [31].

Whereas the read normal and Lombard data are parallel, the
conversational normal and Lombard speech have different lin-
guistic content. Finding matching frames for training a statisti-
cal mapping is, therefore, not as straightforward as with the read
speech data. An additional challenge in the current study is the
large difference between normal and Lombard speech. This dif-
ference, while highly desirable for intelligibility enhancement,
complicates finding correct matches between normal and Lom-
bard data. However, in the current study, the dataset contains
also parallel, read speech data from the same speakers produced
in the same noise conditions which was used to match the nor-
mal and Lombard frames in conversational speech.

First, the voiced frames were selected from the conversa-
tional data with the same method applied previously to the read
frames and the mel-frequency cepstral coefficients (MFCC)
were computed for both the read and the conversational data
using a frame length of 20 ms. The length of the MFCC fea-
ture vector was 12 (the 0th coefficient was excluded). These
features were then used to find nearest neighbors in terms of
the Euclidean distance for the conversational frames from the
corresponding read frames of the same speaker. In other words,
the conversational normal frames were compared to the read
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Figure 4: Long-term average spectra (LTAS) for a male speaker
computed for the read speech data. The LTAS of both the
read normal and the read Lombard data along with the speech
processed with the GMM mapping trained on read speech are
shown. The processed speech is referred to as Mapped in the
figure.

normal frames and similarly for the Lombard frames. If a con-
versational normal frame and a conversational Lombard frame
were associated with normal and Lombard frames from the read
data that had been aligned by the DTW, the conversational nor-
mal and Lombard frame were selected for the GMM training. If
multiple conversational frames were matched to one read frame,
the conversational frame with the smallest Euclidean distance
in the MFCC feature space was selected. Using this procedure,
6091 conversational frames were selected for GMM training.
The number of frames in the read training data was 9670.

For the statistical normal-to-Lombard mapping, the spec-
tral envelope of speech needs to expressed parametrically. In
this study, stabilized weighted linear prediction (SWLP) was
used to parametrize the tilt of the voiced frames. SWLP [32]
is an all-pole modeling technique similar to weighted linear
prediction (WLP) [33] in which the square of the residual is
temporally weighted based on the short-time energy (STE) of
the speech signal. SWLP has been used previously in [13] for
the mapping of spectral tilt with GMMs. Optimization of the
SWLP parameters in [14] yielded values M = 2 and p = 6
which were used throughout this study. The final feature vec-
tor contained the SWLP features as line spectral frequencies
(LSFs). Examples of the average spectral tilt obtained using
the SWLP parametrization for a male speaker are shown in
Fig. 2. While the average spectral tilt computed from the con-
versational speech is quite close to the one computed from read
speech, the difference in the tilt between conversational Lom-
bard and read Lombard speech is notable.

The statistical dependencies between the normal speech
feature vectors x and the Lombard speech feature vectors y are
modeled as a GMM

p(x,y) =
∑
i

wiN

([
x
y

] ∣∣∣∣ [µx|i
µy|i

] [
Σxx|i Σxy|i
Σyx|i Σxx|i

])
, (1)

where the component probabilities are denoted as wi, the mean
vectors as µi, and the covariance matrices as Σi. The model
parameters are trained with the expectation-maximization algo-
rithm implemented in [34]. The minimum mean square error
(MMSE) estimate for features y∗ that correspond to test input
x∗ is calculated based on the GMM distribution as

y∗ =
∑
i

P (i|x∗)
[
µy|i +Ai(x

∗ − µx|i)
]
, (2)

where the linear transformations Ai = Σyx|iΣ
−1
xx|i and

the component probabilities P (i|x∗) are calculated based
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Figure 5: The objective intelligibility scores measured using the speech intelligibility index (SII) for both the original conversational
and read normal and Lombard datasets as well as for speech processed using both the GMM mapping trained with conversational data
and the one trained with read data. The processed speech is referred to as Mapped in the figure. The results are averaged for all the
speakers in the evaluation.

on the prior probabilities wi and the feature likelihoods
N(x∗|µx|i,Σxx|i). GMM models with I = 5 full-covariance
components were used in the current study.

The mapping of spectral tilt from normal to Lombard
speech is utilized as a part of a post-processing algorithm which
has been previously used in [13]. The flowchart of the process-
ing for voiced frames is shown in Fig. 3. The incoming speech
signal is processed with a 8-kHz sampling frequency in 20-ms
frames which are first windowed with wl = sin(π/(2L) · (l +
0.5)) [35], where L is the length of the window. The same
window is also applied after the processing with 50 % over-
lap between consecutive frames. The energy and the gradient-
index [31] are computed from the incoming speech frame, and
used to classify the frame. Frames classified as silence or un-
voiced are not processed.

First, the spectral tilt, parametrized as 1/Ap(z) in Fig. 3,
is estimated with SWLP, transformed to the LSF representa-
tion and mapped with the trained model. After the mapping,
the stability of the output filter is checked and if necessary, the
roots outside of the unit circle are replaced with their mirror-
image pairs inside the unit circle. The frame is then filtered with
Ap(z)/A

′
p(z) removing the original spectral tilt and replacing

it with the Lombard-like spectral tilt. Finally, the energy of the
filtered frame is equalized to the level of the unprocessed frame
with the adaptive gain control (AGC) in the AMR codec [36].

4. Objective evaluation
The performance of the normal-to-Lombard mapping based
post-processing methods trained on conversational and read
speech were evaluated using the speech intelligibility index
(SII) [20]. The speech data used for the testing was the read
normal speech of the same four speakers. A visualization of the
long-term average spectra (LTAS) computed from speech of a
male speaker is shown in Fig. 4.

In addition to the processed samples, the objective intelli-
gibility values were also computed for the original normal and
Lombard data for both the conversational and read case. As
mentioned previously, all the samples were normalized to the
same level using SV56 [29, 28]. Stationary car noise with three
different SNR levels, −10 dB, −5 dB, and 0 dB, was used as
background noise in the evaluation. The SII metric was com-
puted for each speech sample by first removing silent periods
from the samples, computing the SII in segments of 9.4 ms and
then averaging the obtained values over the whole sample. All
the values were then averaged over the four speakers. The re-

sulting SII values are shown in Fig. 5.
Interestingly, the equalized conversational data shows con-

sistently slightly lower SII scores than the corresponding read
speech data. The conversational data still contains segments
where the subjects are mostly talking to themselves while they
are taking notes which might in part be behind the lower intel-
ligibility scores. However, the difference between the normal
and Lombard cases is larger in the conversational data than in
the read data. The processed speech receives similar scores as
the read Lombard speech in the lowest SNRs and the mapping
trained with conversational speech yields even slightly higher
intelligibility scores than the real Lombard speech. Notably, the
baseline for the processed speech is the read normal speech, not
the conversational normal speech.

5. Discussion
A database containing both conversational and read Lombard
speech was recorded in several background noise conditions. A
separate statistical normal-to-Lombard mapping for the spectral
tilt was then trained using both the obtained conversational and
read speech data. The normal-to-Lombard conversions were
then evaluated and compared to the original speech data using
the speech intelligibility index.

The results suggest that the conversational Lombard data
presents a more pronounced effect and, thus, might be better
suited for training statistical models for intelligibility enhance-
ment. However, while the normal-to-Lombard conversion has a
clear impact on both the LTAS and the average spectral tilt, the
difference between the two types of processed speech is much
smaller than the difference between the original data shown in
Fig. 2. A similar tendency can be observed in the objective in-
telligibility scores. One major factor in this disability to transfer
the effect in the conversational data to the statistical mapping
might be the selection of training data. The problem of using
non-parallel data for voice conversion has been discussed, for
instance, in [37, 38]. The data selection technique used in the
current study might favor conversational frames that resemble
read frames which would result in similar statistical models for
the two datasets.
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