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Abstract
This article presents a framework for overviewing the perfor-
mance of fundamental frequency (F0) estimators and evaluates
its effectiveness. Over the past few decades, many F0 estima-
tors and evaluation indices have been proposed and have been
evaluated using various speech databases. In speech analy-
sis/synthesis research, modern estimators are used as the algo-
rithm to fulfill the demand for high-quality speech synthesis, but
at the same time, they are competing with one another on mi-
nor issues. Specifically, while all of them meet the demands for
high-quality speech synthesis, the result depends on the speech
database used in the evaluation. Since there are various types
of speech, it is inadvisable to discuss the effectiveness of each
estimator on the basis of minor differences. It would be bet-
ter to select the appropriate F0 estimator in accordance with
the speech characteristics. The framework we propose, TUSK,
does not rank the estimators but rather attempts to overview
them. In TUSK, six parameters are introduced to observe the
trends in the characteristics in each F0 estimator. The signal
is artificially generated so that six parameters can be control-
lable independently. In this article, we introduce the concept of
TUSK and determine its effectiveness using several modern F0
estimators.
Index Terms:Speech analysis, fundamental frequency, tempo-
ral variation, noise robustness

1. Introduction
Fundamental frequency (F0) is one of the most important pa-
rameters for speech processing. Speech synthesizers come with
a standard function for manipulating F0. Although many F0
estimators have been proposed over the years, as yet there is
no perfectly ideal algorithm because of the many conditions in
speech. Speech often contains noise depending on the record-
ing environment; for example, vibrato singing has an F0 contour
that includes temporal fluctuation. The F0 of a periodic signal is
defined as the smallest period of the vocal cord vibrations, and
F0 estimators assume that speech is periodic in the short term.
However, vibrato singing does not fulfill this assumption even
if the period of analysis is short, so it is difficult to estimate an
accurate F0 contour from such singing. Since real speech can
become degraded for a variety of reasons, a perfect F0 estimator
is the ultimate target.

In speech analysis/synthesis, speech used as the input is
usually recorded in a silent environment, which is in contrast
to the speech used for other studies such as those involving au-
tomatic speech recognition. A vocoder-based synthesizer [1] re-
quires not only the F0 but also the spectral envelope, and F0 in-
formation is useful to accurately estimate this [2, 3, 4]. Speech
analysis/synthesis research therefore tends to give higher prior-
ity to estimation accuracy than to noise robustness. On the other

hand, noise robustness is important in speech processing using
speech recorded in a real environment including noise. The ap-
propriate F0 estimator therefore depends on the purpose of the
study. It is important to not only rank the F0 estimator but also
to overview the characteristics of F0 estimators.

In light of the above, we introduce a framework for
overviewing the characteristics of F0 estimators. This frame-
work, named TUSK, utilizes an artificial signal for the evalua-
tion. The equation used for designing the signal has six parame-
ters for measuring the characteristics of an F0 estimator. In this
article, we explain the concept of TUSK and the six parameters.
A computational simulation with several modern F0 estimators
is carried out to demonstrate the effectiveness of TUSK.

The rest of this paper is organized as follows. In Section
2, we briefly discuss the conventional research on F0 estima-
tors and methods for their evaluation. In Section 3, we propose
our framework, TUSK. In Section 4, we evaluate the proposed
framework with several modern F0 estimators. We conclude in
Section 5 with a brief summary and a mention of future work.

2. Conventional F0 estimators and
evaluation methods

Many F0 estimators based on acoustic features have been pro-
posed [5]. In terms of acoustic features in the time domain, au-
tocorrelation [6] is standard, and several improved algorithms
such as YIN [7] and pYIN [8] have been proposed. Since the
power spectrum of input speech has a harmonic structure, an
acoustic feature based on the power spectrum is used for es-
timation. Cepstrum [9, 10] is standard, and SWIPE [11] has
recently been proposed as an accurate estimator. In terms of
other acoustic features, the instantaneous frequency [12] and
events caused by vocal fold vibrations [13] are used as effective
acoustic features. We have also proposed an algorithm based
on fundamental component extraction in the harmonic structure
[14]. Several algorithms specializing in noise robustness have
also been proposed [15, 16]. Since the appropriate F0 estimator
can be selected in accordance with the specific speech charac-
teristics under consideration, it is important to understand the
characteristics of each F0 estimator.

Performance evaluation has been carried out on real speech
including an electroglottography (EGG) signal. The CMU
ARCTIC database1 and Paul Bagshaw’s database2 are usually
used in such evaluation. The target F0 contour is calculated
from the EGG signal and the estimation performance is then
calculated from the difference between the target and estimated
F0 contours. Various evaluation indices have also been pro-
posed, such as fine pitch error (FPA) gross pitch error (GPA)

1http://festvox.org/cmu arctic/index.html
2http://www.cstr.ed.ac.uk/research/projects/fda/
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[17], and gross error [7].
One of the major problems is the reliability of the target

F0 contour. An estimator is required to calculate the target F0
contour because the EGG signal is equivalent to the information
in vocal cord vibrations. The F0 estimator used for estimating
the target F0 contour affects the evaluation result—sometimes
positively, sometimes negatively. To address this issue, TUSK
uses an artificial signal generated from the target F0 contour.
Conventional error indices are useful but they make it more dif-
ficult to simply discuss the performance, so TUSK uses the root
mean square (RMS) error between the target and estimated F0
contours.

3. TUSK: The proposed framework
TUSK measures the relationship between estimation perfor-
mance and six parameters. These six parameters are used to
design the artificial signal used in the evaluation.

3.1. Signal commonly used in the evaluation

We first explain how to design the artificial signal that has six
parameters. Signal x(t) is a complex tone and given by

x(t) = n(t) + h(t) ∗
K∑

k=1

ak cos

(
2πk

∫ t

0

f0(τ)dτ + θk

)
,

(1)
where n(t) represents additive noise, h(t) represents an impulse
response, ∗ represents the convolution, and f0(t) represents an
F0 contour. ak and θk represent the amplitude and phase at k-th
harmonic components, respectively. K represents the number
of harmonics and is determined such that Kf0(t) does not ex-
ceed the Nyquist frequency. The influence of a parameter on the
estimation performance is evaluated by controlling the parame-
ter.

The average f0(t) is fixed to a basic F0 fc. Note that since
the F0 contour of real speech contains small fluctuation, a fluc-
tuation model proposed by Klatt [18] is added to the basic F0.

Δf0(t) =
FL

50

fc
100

(sin(2π12.7t) + sin(2π7.1t)

+ sin(2π4.7t)), (2)

where FL is the parameter associated with the flatter and is
fixed to 25 in accordance with reference [18]. The target F0
contour f0(t) is defined as f0(t) = fc + Δf0(t). The basic
parameters are defined as n(t) = 0, h(t) = δ(t), ak = 1,
θk = 0, and fc = 440.

3.2. ACT 1: Relationship between basic F0 and estimation
performance

The first evaluation is carried out to confirm the frequency range
in which the estimator can estimate an accurate F0. The param-
eter used in ACT 1 is the basic F0 fc, and we can measure
the frequency range by controlling it. Since the signal does not
contain additive noise or reverberation, the result in ACT 1 gen-
erally achieves the highest performance.

3.3. ACT 2: Influence of temporal fluctuation in F0 contour

ACT 2 uses an F0 contour that has a parameter for measuring
the influence of the temporal fluctuations. The additive F0 con-
tour fv(t) is given by

fv(t) =
√

αfc cos
(√

αfct
)
, (3)

where α represents the intensity of temporal fluctuation in the
F0 contour and the maximum tilt indicates αfc. This evaluation
uses the F0 contour defined as f0(t) = fc + Δf0(t) + fv(t).
In this paper, we call the parameter α vibrato intensity. ACT 2
enables us to observe the influence of vibrato intensity on the
estimation performance by controlling α.

3.4. ACT 3: Influence of amplitudes of each harmonic com-
ponent

Algorithms focusing on the harmonic structure of a power spec-
trum would be weak against the variation of amplitude of each
harmonic component. To determine the influence, ak is ran-
domized in ACT 3, and the dynamic range of randomization is
used as the parameter. This dynamic range is given as the log-
arithmic amplitude, and uniform random numbers are used for
randomization. This evaluation is repeated several times and its
median value is used as the estimation performance.

3.5. ACT 4: Influence of phases of each harmonic compo-
nent

In ACT 4, θk is randomized as with ACT 3. The phase dif-
ference between θk and θk+1 affects the power by interference
between neighboring harmonics. ACT 4 can measure the influ-
ence of the phase difference between neighboring harmonics.
The parameter is the dynamic range, and its maximum value is
2π. Other conditions are the same as ACT 3.

3.6. ACT 5: Noise robustness

ACT 5 uses arbitrary noise, with the SNR as the parameter. Ba-
sic noise robustness is evaluated by the relationship between the
SNR and the estimation performance. Since ak is fixed to 1 in
this evaluation, SNR in all frequency bands is fixed by using
white noise. We can also use other types of noise to measure
the influence of the noise type on the estimation performance.

3.7. ACT 6: Influence of the reverberation

The last evaluation measures the influence of the reverberation.
In room acoustics, an impulse response is used to estimate the
reverberation time T60. The impulse response measured in a
room contains early reflections and the reverberation. Since it
is difficult to control them by one parameter, TUSK uses the im-
pulse response designed by a simple parameter in the reverber-
ation. The amplitude envelope is given by the following equa-
tion:

he(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (t < 0)

1 (t = 0)

exp

(
t log(0.001)

r

)
√
10

(otherwise),

(4)

where r represents the parameter associated with the reverbera-
tion time T60. The impulse response h(t) is calculated by mul-
tiplying he(t) by white noise n(t). In the equation, the ampli-
tude of the last term is set to

√
10 on the basis of early delay

time (EDT), which is the reverberation time measured over the
first 10 dB of the decay. This impulse response does not have
early reflections; it only has the reverberation.
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Table 1: Experimental conditions for each evaluation
Evaluation Parameter
ACT 1 fc: 2100...6900 cent
ACT 2 α: 0...25
ACT 3 ak: 0...40 dB
ACT 4 θk: 0...2π
ACT 5 (white noise) SNR: 0...60 dB
ACT 5 (pink noise) SNR: 0...60 dB
ACT 6 r: 10...1000 ms
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Figure 1: Relationship between the basic F0 and the RMS error
of each estimator. Results of YIN and XSX indicate locally high
error.

4. Evaluation
To determine the effectiveness of TUSK, we carried out a series
of experiments by computer simulation.

4.1. F0 estimators used in the evaluation

We used several modern F0 estimators in the experiment. YIN
[7] and SWIPE [11] were utilized as standard estimators fo-
cusing on the time and frequency domain, respectively. NDF
[19] used in STRAIGHT [20] and XSX used in TANDEM-
STRAIGHT [21, 22] are utilized as the high performance esti-
mators. DIO [14] and StoneMask are also used for comparison.
They are used in WORLD [23]3, which is a high-quality speech
analysis/synthesis system. DIO requires high-SNR speech, and
StoneMask is used to improve the noise robustness of the result
estimated by DIO.

4.2. Common conditions

The length of the complex tone was set to 1.2 s and the sampling
frequencies of x(t) and f0(t) were 48 and 1 kHz, respectively.
In all algorithms, the frame shift was set to 1 ms and the lower
and upper limits in the F0 search were set to 40 and 1,000 Hz,
respectively. Since several of the algorithms could not estimate
the F0 of the head and tail, they were removed from the evalua-
tion. The F0s of 1,000 samples ranging from 0.1 to 1.1 s were
used to calculate the RMS error. The average RMS error was
defined as the estimation performance of a condition.

The conditions in the six parameters are shown in Table 1.
ACT 5 used white and pink noises to confirm the difference of

3http://ml.cs.yamanashi.ac.jp/world/
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Figure 2: Influence of vibrato intensity on the RMS error. The
results of XSX, DIO, and DIO+StoneMask were almost all the
same.
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Figure 3: Influence of the amplitude randomization on the RMS
error.

noise type. The number of iterations in ACTs 3, 4, 5, and 6 is
100, and the median value is used in the evaluation.

4.3. Results

Figure 1 shows the relationship between the basic F0 and the
estimation performance. The horizontal and vertical axes rep-
resent the basic F0 and the RMS error, respectively. The RMS
errors of YIN and SWIPE were higher than those of the others.
The results of YIN and XSX have peaks in lower and higher
F0, respectively. This can be attributed to typical F0 estimation
errors such as half or double pitch errors.

Figure 2 shows the relationship between the vibrato inten-
sity α and the RMS error. In all estimators, the estimation error
increased in proportion to the vibrato intensity α. In SWIPE,
the estimation error exponentially increased when the vibrato
intensity exceeded 21. This suggests that SWIPE was inferior
to the others in terms of temporal resolution.

Figures 3 and 4 show the influences of amplitude ak and
phase θk on the RMS error. In amplitude θk, XSX tends to in-
crease the estimation errors in proportion to the dynamic range.
The other estimators were not affected by the dynamic range. In
phase θk, virtually non of the algorithms increased the estima-
tion error. This suggests that the influence of phase difference
on the power spectrum is small.

Figures 5 and 6 show the relationship between the SNR
and the estimation performance. The results of white and pink
noise, shown in Fig. 5 and 6, respectively, suggest that YIN and
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Figure 4: Influence of the phase randomization on the RMS er-
ror.
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Figure 5: Influence of the SNR on the RMS error (white noise).

SWIPE were robust against the noise. DIO was the worst of all
estimators in noise robustness, but DIO+StoneMask improved
the robustness, as expected. Similar trends were observed be-
tween white and pink noise. In all estimators, the results suggest
that the SNR in a lower frequency band is important.

Figure 7 shows the relationship between the reverberation
parameter and the RMS error. YIN had a different trend than
the other estimators. The results of the other estimators were
almost all the same.

4.4. Discussion

The proposed framework was able to provide an overview of
the characteristics of F0 estimators. For example, it showed
that YIN was inferior to others in terms of estimation error but
superior for noise robustness. Although NDF was superior in
all parameters, it comes at a huge computational cost. In cases
where fast processing speed is required, the DIO+StoneMask
would be reasonable when the input speech is recorded in a
silent environment. In speech recorded in a noisy environment,
YIN achieves the best performance. Ultimately, the framework
enables users to select the appropriate estimator on the basis of
the result.

TUSK enabled us to discuss the characteristics of each F0
estimator. However, TUSK does not focus on processing speed
or voiced/unvoiced estimation. Expansion of TUSK in the eval-
uation of voiced/unvoiced estimation and processing speed is
important. To approximate the speech signal, another parameter
such as amplitude modulation would be also important. Since
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Figure 6: Influence of the SNR on the RMS error (pink noise).
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Figure 7: Influence of the reverberation on RMS error. In this
evaluation, the results of DIO+StoneMask and NDF were al-
most all the same.

current version of TUSK uses artificial signals that roughly ap-
proximate the real speech, an evaluation by speech database
with EGG signal should also be carried out concurrently. A
glottal source model based on the L-F model [24] can approx-
imate real speech, and introduction of the model is one of the
future works.

5. Conclusion
In this article, we introduced our framework for overviewing
the performance of F0 estimators. Conventional research on F0
estimation has used several speech databases, but the proposed
framework, TUSK, uses an artificial signal in which the target
F0 contour is known. TUSK evaluates F0 estimators using six
parameters.

The evaluation using several modern F0 estimators demon-
strated that TUSK can evaluate the characteristics of each esti-
mator, thus enabling users to select the appropriate F0 estimator
for the characteristics of the target speech. Our next objective is
to expand TUSK for the evaluation of other parameters. A sys-
tem of for recommending an F0 estimator on the basis of target
speech will also be key in our future work.

6. Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers
26540087, 15H02726, 16H01734.

1793



7. References
[1] H. Dudley, “Remaking speech,” J. Acoust. Soc. Am., vol. 11, no. 2,

pp. 169–177, 1939.
[2] M. Morise, “CheapTrick, a spectral envelope estimator for high-

quality speech synthesis,” Speech Communication, vol. 67, pp.
1–7, 2015.

[3] ——, “Error evaluation of an f0-adaptive spectral envelope esti-
mator in robustness against the additive noise and f0 error,” IEICE
Trans. Inf. & Syst., vol. E98-D, no. 7, pp. 1405–1408, 2015.

[4] T. Nakano and M. Goto, “A spectral envelope estimation method
based on f0-adaptive multi-frame integration analysis,” in Proc.
SAPA-SCALE 2012, pp. 11–16, 2012.

[5] W. Hess, Pitch determination of speech signals. Springer-Verlag,
1983.

[6] M. Ross, H. Shaffer, A. Cohen, R. Freudberg, and H. Manley,
“Average magnitude difference function pitch extractor,” IEEE
Transactions on acoustic, speech, and signal processing, vol.
ASSP-22, no. 5, pp. 353–362, 1974.
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