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Abstract

We propose a DNN-based voice activity detector augmented
by entropy based frame rejection. DNN-based VAD classifies
a frame into speech or non-speech and achieves significantly
higher VAD performance compared to conventional statistical
model-based VAD. We observed that many of the remaining er-
rors are false alarms caused by background human speech, such
as TV /radio or surrounding peoples’ conversations. In order to
reject such background speech frames, we introduce an entropy-
based confidence measure using the phone posterior probability
output by a DNN-based acoustic model. Compared to the target
speaker’s voice background speech tends to have relatively un-
clear pronunciation or is contaminated by other types of noises
so its entropy becomes larger than audio signals with only the
target speaker’s voice. Combining DNN-based VAD and the en-
tropy criterion, we reject speech frames classified by the DNN-
based VAD as having an entropy larger than a threshold value.
‘We have evaluated the proposed approach and confirmed greater
than 10% reduction in Sentence Error Rate.

Index Terms: Voice Activity Detection, Deep Neural Network,
Entropy

1. Introduction

Voice Activity Detection (VAD) is an important component of
front-end processing in speech recognition systems because it
can reduce recognition errors and also the computational cost
by segmenting input audio into background speech and non-
speech. It is also important in high-quality hands-free radio
communication and speech codecs. Conventional VAD meth-
ods can be categorized into 5 different types. The first is based
on raw acoustic features such as energy or zero-crossing rate
of audio signals[1l, 2]. The second one is statistical models
in which speech and non-speech frames are modeled by Gaus-
sian distributions and the log-likelihood ratio is used to decide
whether a frame is speech or noise. The other types use some
kind of classifier: Support Vector Machine (SVM) is one of
the most popular classifiers in many machine learning tasks and
is also used in VAD[3]. State-space models such as HMM or
Kalman-filters have also been applied to VADI[4, 5]. Finally,
Deep Neural Network (DNN) based VAD is becoming popular
inspired by its success in acoustic modeling[6, 7, 8].

In this paper we focus on improving DNN-based VAD per-
formance of our speech recognition system. We are running
an internally developed speech recognition system for mobile
voice search. We chose DNN-based VAD for our system be-
cause it is easy to implement and train since the source code
and training data are easily derived from that used for acoustic
modeling. However, there are some issues that degrade speech
recognition accuracy due to the failure of VAD. We analyzed
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some misrecognized speech and found that our system is very
sensitive to speech so there are many false alarms caused by
background speech from nearby peoples’ conversations or TV /
radio. We can categorize utterances collected through our sys-
tem into three major domains according to which smartphone
application the utterances come from — typical voice search
application (Search), personal assistant application (Dialogue),
and voice search for map application which is typically used in-
side a car for car-navigation (Vehicle). Utterances from the Ve-
hicle domain are the most affected by such background speech
which we try to overcome in this paper.

We propose a method that utilizes the entropy of the poste-
rior probability output by the acoustic model DNN. We observe
that most background speech comes from the conversations of
surrounding people or a TV / radio speaker. Speech from a TV
or radio’s loudspeaker tends to be contaminated by noise or re-
verberation because the location of the loudspeaker is further
from the microphone than the target speaker. When clear utter-
ance frames are fed into the acoustic model, it is easy to decide
which state is most likely at each frame and there is little am-
biguity so the posterior probability of one state takes a higher
value than the other states. In this case entropy of the poste-
rior probability is small. On the other hand when background
speech is fed into the same acoustic model, it is hard to say
that only one state is most likely because of contamination by
noise so many states’ posteriors have higher values. In this sit-
uation, the probability distribution function of the posterior will
be closer to a uniform distribution so its entropy value becomes
larger. Therefore, we hypothesize that such background speech
can be rejected by adding a decision based on the entropy value.

As far as we know, there are no articles about the classifica-
tion of background speech although there are some methods in
the literature which utilize the entropy of the spectrum of speech
for VAD[9, 10] and the entropy of the posterior of the acoustic
model is utilized in classifying speech and music in [11]. How-
ever, this work is different from above-mentioned work in terms
of its purpose and the method of utilizing the entropy value.

2. Proposed Method

Conventional DNN-based VAD decides whether each frame is
speech or non-speech by comparing the sum of speech states’
posterior probabilities and the sum of non-speech states’ pos-
terior probabilities output by a DNN. A typical way of build-
ing DNNs for VAD is to train a DNN with two output states
(speech/non-speech). An alternative way is to use an acoustic
model DNN directly by assuming that all states assigned to non-
silence tri-phones are speech states. Non-speech states are the
ones that are assigned to the silence tri-phone. We chose to use
the acoustic model as our DNN for VAD because we can reuse
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its output in the entropy calculation which is a crucial part of
our proposed method. We conducted preliminary experiments
and confirmed that there was little difference in the performance
of these two approaches.

We now describe in detail our VAD algorithm. Suppose
x(t) is an acoustic feature vector at the ¢-th time frame and
W, b; are respectively the [-th layer’s weight matrix and bias
vector of an acoustic model DNN with L layers, then the poste-
rior probability is calculated as follows:

The 1-st hidden layer’s output is calculated by

hi(t) = Wixz(t)+ by, (H
oi(t) = g1 (ha(t)), @
and the [ = {2,--- , L}-th layers’ output is calculated by
hi(t) = Wioi-1(t) + by, 3)
oi(t) = gi(hu(t)), Q)

where g;(+) is a non-linear activation function for the I-th layer.
We used the sigmoid function for ! = {1,--- , L — 1}-th layers
defined by

1

1+ exp(—y)’ ©)

gy) =
and the identity function for the L-th layer. The final L-th
layer’s output is converted to posterior probabilities using the
softmax function:

exp(of (1))
>y exp(of, (1))
where ot (t) represents the i-th component of vector or,(t).

Then, the posterior probability of the speech hypothesis 1 and
non-speech hypothesis Hy is calculated as follows:

p(ilz(t)) = (6)

p(Hil(t)) = p(ile(t) 7
€S

p(Holz(t)) = D plilz(t) ®)
i€EN

where S denotes the set of indices representing speech states
and N represents the set of indices of silence states. If the fol-
lowing condition is met, we decide the t-th frame is a speech
frame:

p(Hi|z(t)) > p(Holz(t)). €

In our method, the entropy based decision is also applied to
speech frames classified by the above criterion. The entropy of
each frame is calculated by

e(t)= )

i€ESUN

p(ilz(t)) log p(ilz(t)), (10)

so if the following condition is met, the ¢-th frame is identified
as target speech and passed to the decoder:
e(t) < . an

A diagram of this algorithm is shown in Fig.1
As we mentioned in the introduction, the posterior proba-
bility of background speech could become close to a uniform
distribution because of contamination by noise or reverberation
so its entropy value becomes larger than clear utterances. We
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Figure 1: Diagram of proposed VAD method.

show the waveform, manually labeled voice regions, posterior
probability of speech and the entropy value of two utterances
in Fig.2 and 3. Fig.2 is a plot of a clean and clear utterance.
We can see that the entropy values do not become large. Fig.3
is an utterance corrupted by speech from the radio in a car en-
vironment. Both before and after the correct voice region, the
posterior probability of speech becomes larger because of back-
ground speech. In that region, the entropy value becomes larger
than those of the correct voice region.

We plot the histograms of entropy of our development set
in Fig.4 in order to see whether it is possible to classify back-
ground speech using the entropy value. Each frame of the de-
velopment set is tagged as true positive, true negative, false
alarm or false rejection by comparing labels generated by forced
alignment. By manually checking several utterances from the
development set, we confirm that most false alarms are caused
by background speech. It is clear that the entropy value of
frames tagged as false alarm are larger than other frames. We
also plot the histogram of the moving average of entropy in
Fig.5 and 6 because in [11] it is shown that averaging entropy
over multiple frames makes it easier to discriminate a frame of
speech or music. We expect that it works well in our back-
ground speech classification scenario too. However, averaging
over multiple frames makes the histogram of false alarm frames
close to true positive frames so we add the frame-wise entropy-
based decision criterion to reject background speech frames. If
e(t) is greater than some threshold, the ¢-th frame is classified
as background speech.

3. Experiment
3.1. Experimental setup

We evaluated the conventional and proposed VAD method using
the acoustic model DNN trained on 1200 hours of transcribed
speech collected through our mobile voice search system. The
conventional baseline method uses only Eq. (9) and the pro-
posed method uses Eq. (9) and (11) for speech classification as
shown in Fig.1. We select 20k utterances from map applications
(Vehicle domain we defined in the introduction) which are dif-
ferent to those used in training. Then, we divide them equally
into development and evaluation sets in such a way that each set
does not contain utterances from the same period of time and
from the same smartphone (each set has 10k utterances). In ad-
dition to these two sets, we prepared two reduced test sets (each
a subset of the above 10k evaluation and development sets, re-
spectively) to see the contribution of the VAD method to recog-
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Figure 2: Waveform, manually labeled voice region, posterior
probability of speech state and entropy and of an utterance by a
single speaker without background noise.
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Figure 3: Waveform, manually labeled voice region, posterior
probability of speech state and entropy of an utterance with
background speech.

nition accuracy. Speech recognition errors are caused by VAD
errors or ASR decoder errors, and it is not trivial to separate
these causes in general. In the reduced test sets, we chose ut-
terances from the original test sets that are correctly recognized
using manually labeled VAD boundaries. With these reduced
test sets, we can estimate the contribution of our VAD method
to recognition accuracy.

We use two metrics to analyze performance. The first one
is VAD frame error rate (FER) which is the number of frames
misclassified divided by the total number of frames. The second
one is phone Sentence Error Rate (SER). The reason for choos-
ing SER is that our system is designed for mobile voice search
in Japanese where the commonly used Word Error Rate (WER)
metric does not always reflect the subjective performance by
a user. This is because an error of one word may result in a
completely different search result. The reason for using only
phone information is because Japanese has 4 alphabets (kanji,
hiragana, katakana and romaji) and one sentence can have mul-
tiple surface forms while having the same meaning therefore we
normalized all surface forms to phones.

The audio signal of each utterance in the test set is first sent
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Figure 4: Histogram of entropy of development set.

to a VAD process and classified frame-wise into speech or non-
speech. Then, the frame-wise VAD results are smoothed using
a manually tuned finite-state automaton. After that, the seg-
mented speech regions are passed to the decoder. Our decoder
is an internally developed single-pass WFST decoder[12]. The
language model is a tri-gram model trained using text queries
of the Yahoo Japan search engine and transcriptions of mobile
voice search queries. Other parameters are detailed in Table 1.

Table 1: Parameters of the speech recognition system.

[ name [ value |
Acoustic feature 40ch Filter Bank
Splicing -5/+5
Number of units in hidden layers 1024
Number of hidden layers 5
Output state numbers 4003
Vocabulary size 1.3M

3.2. Results

VAD FER of the development set is shown in Table 2. The best
FER is observed when we set the entropy threshold to 7.0. At
that operating point, the relative reduction in FER was 5.5%.
VAD FER of the evaluation set is shown in Table 3 where the
relative improvement was 2.4%.

Table 2: VAD FER of the development set.
[ Method | Entropy threshold [ FER %

baseline - 4.54
proposed 6.0 4.50
7.0 4.29
8.0 4.46
9.0 4.54

The SER of the reduced test set is shown in Table 4. A rel-
ative reduction in SER of more than 10% was achieved. These
results show that our proposed method can correctly recognize
sentences that the baseline system could not. The SER of the
whole test set is shown in Table 5. The reduction in SER on the
development set was 4% and on the evaluation set was 2.2%.
Note that the whole test set contains mis-recognized sentences
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Figure 5: Histogram of averaged entropy over 10 frames of de-
velopment set.
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Figure 6: Histogram of averaged entropy over 20 frames of de-
velopment set.

Table 3: VAD FER of the evaluation set.

[ Method | Entropy threshold [ FER % |

baseline - 4.60
proposed 7.0 4.49

which might not have been caused by VAD failure so the im-
provement appears smaller than on the reduced test set.

We also checked the performance in non-target domains.
Table 6 shows the results in two other domains: utterances col-
lected through a personal assistant smartphone application (Di-
alogue) and a typical voice search application (Search). There
was little difference in performance even though the threshold
of entropy was optimized for the Vehicle domain. Therefore
our method can improve recognition accuracy in the Vehicle do-
main without any degradation in performance in other domains.

4. Conclusion

We augmented a DNN-based VAD in order to suppress false
alarms caused by background speech from TV / radio or sur-
rounding peoples’ conversations. Background speech tends to
be contaminated by other noises and reverberation because the
location of such sound is further from the microphone than
the target speaker’s voice. If utterances with such background
speech are fed to the acoustic model, the posterior probability of
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Table 4: Speech recognition results on the reduced test set.
SER improvements in this table indicate estimated value of how
much contribution is made to recognition accuracy due to VAD
improvement.

| Condition [ #Utts. [ SER % [ #Cor. [ Red. % ‘
dev.  baseline 8554 5.46 | 8087
proposed 8554 4.70 | 8152 13.9
eval. baseline 8330 3.95 | 8001
proposed 8330 3.52 | 8037 10.8

Table 5: Speech recognition results on the whole test set. The
whole test set contains utterances that cannot be recovered by
improving the VAD.

| Condition | #Utts | SER % |
dev.  baseline 10000 16.78
proposed | 10000 16.10
eval. baseline 10000 17.66
proposed | 10000 17.26

Table 6: Recognition results in non-target domains.

| domain [ system [ #Utts [ SER % ‘
Search baseline 10000 24.09
proposed | 10000 23.98
Dialogue | baseline 10000 23.79
proposed | 10000 23.71

each HMM state becomes close to a uniform distribution which
results in larger entropy. Hence we utilized the entropy of the
posterior probability output by the DNN acoustic model to re-
ject background speech frames.

Experimental results showed that the FER of our proposed
method was reduced by 5.5% on the development set and 2.4%
on the evaluation set. The reduction in phone SER on the re-
duced test set in which we estimate the contribution of VAD im-
provement to recognition accuracy was 13.9% on the develop-
ment set and 10.8% on the evaluation set. Reduction in SER on
the whole test set was 4% on the development set and 2.2% on
the evaluation set without any degradation in the performance
in other domains.
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