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Abstract

In the past decades, many successful approaches for language
identification have been published. However, almost none of
these approaches were developed with singing in mind. Singing
has a lot of characteristics that differ from speech, such as a
wider variance of fundamental frequencies and phoneme dura-
tions, vibrato, pronunciation differences, and different semantic
content.

We present a new phonotactic language identification system
for singing based on phoneme posteriorgrams. These posterior-
grams were extracted using acoustic models trained on English
speech (TIMIT) and on an unannotated English-language a-
capella singing dataset (DAMP). SVM models were then trained
on phoneme statistics.

The models are evaluated on a set of amateur singing recordings
from YouTube, and, for comparison, on the OGI Multilanguage
corpus.

While the results on a-capella singing are somewhat worse than
the ones previously obtained using i-vector extraction, this ap-
proach is easier to implement. Phoneme posteriorgrams need to
be extracted for many applications, and can easily be employed
for language identification using this approach. The results on
singing improve significantly when the utilized acoustic models
have also been trained on singing. Interestingly, the best re-
sults on the OGI speech corpus are also obtained when acoustic
models trained on singing are used.

Index Terms: Language identification, Singing, Phonotactics,
Automatic Speech Recognition, Music Information Retrieval

1. Introduction

Language identification for songs, or Sung Language Identifica-

tion (SLID), is a topic of research that has not received much at-

tention so far. There are many factors that make language iden-

tification on sung audio material more difficult than on speech,

but such an approach has a number of practical applications:

Direct search of music in a certain language SLID can be
useful for users who are, for example, looking for mu-
sic for a holiday video, or for music to help them learn
a language. Commercial users could use this for adver-
tisement videos.

Improvement of similarity search Similarity
could include the sung language.
Improvement of regional classification As mentioned in [1],

human subjects tend to rely on the language to determine
the region of origin of a musical piece. This is not taken
into account by current regional classification systems.
Improvement of genre classification Similar to regional clas-
sification, certain musical genres are closely connected
to a single singing language. Considering the “glass
ceiling” of approximately 80% for many classification
tasks in music information retrieval [2], new hybrid ap-
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proaches are necessary to improve them. SLID could
serve this purpose, too.

The approaches published so far are based either on Parallel
Phone Recognition followed by Language Modeling (PPRLM),
or on models trained directly on various audio features or i-
vectors [3].

In this paper, we present a new approach that is based upon
phoneme statistics derived from phoneme posteriorgrams. To
obtain representative statistics for model training, relatively
long observations are necessary, but this is usually the case for
song material (e.g. songs of 3-4 minutes in duration). On the
other hand, phoneme posteriorgrams need to be calculated for
a number of other tasks, such as keyword spotting or lyrics-to-
audio alignment. Using our approach, language identification
can be performed easily if these posteriorgrams are available.

The paper is structured as follows: In section 2, we sum up
the state of the art for Sung Language Identification. In section
3, we describe the data sets that were used in the experiments.
Section 4 explains our new approach. In section 5, we present
our experiments and their results. Finally, we give a conclusion
in section 6 and make suggestions for future work in section 7.

2. State of the art
2.1. Language identification for singing

Singing presents a number of challenges for language identifi-
cation when compared to pure speech. To mention a few exam-
ples [4]:

Larger pitch fluctuations A singing voice varies its pitch to a
much higher degree than a speaking voice. It often also
has very different spectral properties.

Higher pronunciation variation Singers are often forced by
the music to pronounce certain sounds and words differ-
ently than if they were speaking them.

Larger time variations In singing, sounds are often pro-
longed for a certain amount of time to fit them to the
music. Conversely, they can also be shortened or left out
completely.

Different vocabulary In musical lyrics, words and phrases of-
ten differ from normal conversation texts. Certain words
and phrases have different probabilities (e.g. higher fo-
cus on emotional topics in singing).

Background music adds irrelevant data (for language identi-
fication) to the signal, which acts as an interfering fac-
tor to the algorithms. It therefore should be removed or
suppressed prior to the language identification, e.g. by
source separation algorithms.

In this paper, we only work with unaccompanied singing
to remove this difficulty.

So far, only a few approaches to perform language identification

on singing have been proposed.

Schwenninger et al. [5] use MFCC features and statistical
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modeling. They test different pre-processing techniques, such
as vocal/non-vocal segmentation, distortion reduction, and az-
imuth discrimination. None of these techniques seem to im-
prove the over-all results. They achieve an accuracy of 68% on
a-capella music for two languages (English and German).

The approach of Tsai and Wang [6] follows a traditional
PPRLM flow. After vocal/non-vocal segmentation, they run
their data through acoustic models using vector tokenization.
One acoustic model for each language is used. The results are
then processed by bigram language models, again for each lan-
guage. The language model score is used for a maximum like-
lihood decision to determine the language. They achieve results
of 70% accuracy for two languages (English and Mandarin).
Mehrabani and Hansen [7] also use a PPRLM system, with the
difference that all combinations of acoustic and language mod-
els are tested. Their scores are combined by a classifier to de-
termine the final language. This results in a score of 78% for
three languages (English, Hindi, and Mandarin). Combining
this technique with prosodic data improved the result even fur-
ther.

Chandrasekhar et al.[8] attempt to determine the language for
music videos using both audio and video features. They achieve
accuracies of close to 50% for 25 languages. It is interesting
to note that European languages seem to achieve much lower
accuracies than Asian and Arabic ones. English, French, Ger-
man, Spanish and Italian rank below 40%, while languages like
Nepali, Arabic, and Pashto achieve accuracies above 60%.

We previously tested a different system based on Gaussian Mix-
ture Models (GMMs) [9]. This approach does not require pho-
netically annotated training data like the PPRLM approaches
and is easier to implement. We achieved an accuracy of 68%
on three languages (a-capella data) when using TRAP features,
and 51% for MFCCs. We later improved on this approach by
adding i-vector extraction to the process and using Multilayer
Perceptron (MLP) and Support Vector Machine (SVM) classi-
fiers. The highest result obtained is 78% accuracy when using
PLP features, and 68% for MFCCs [10].

2.2. Phonotactic language identification on speech

Many approaches to language identification utilize information
about the phonotactic properties of the considered languages in
some way. A common way of doing this is language model-
ing. But there are also approaches which directly take phoneme
statistics into account.

In [11], Zissman compares four general approaches to language
identification, with one of them being Parallel Phone Recogni-
tion (PPR). In this approach, phoneme recognition and Viterbi
decoding are performed for each language individually, and
then the final scores are compared to determine the most likely
language. Many approaches have since employed classical lan-
guage n-gram models for this task (e.g. [12] and [13]).
Berkling presented an approach that uses sequences of recog-
nized phonemes to discriminate between two languages (En-
glish and German), either with statistical modeling or with Neu-
ral Networks [14]. Mean errors of 0.12 and 0.07 on unseen data
are achieved for the statistical approach and the Neural Network
approach respectively when enough training data is available.
Li, Ma, and Lee present a system where acoustic inputs are tok-
enized into acoustic words, which do not necessarily correspond
to phonetic n-grams. Then, language classifiers are trained on
statistics of the acoustic words [15]. They obtain an equal error
rate of 0.05 for six languages using a universal phoneme recog-
nizer for tokenization and SVMs for backend language recogni-
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tion. Peche et al. [16] attempt a similar approach on languages
with limited resources. The performance remains good even
when only acoustic models trained on different languages are
used.

In all of these approaches, tokenization of some sort is per-
formed using the acoustic models. Since phoneme recognition
on singing still performs relatively badly, we instead calculate
statistics directly on the phoneme posteriors.

3. Data sets
3.1. Training data data sets
3.1.1. Speech training data sets

For training our baseline phoneme recognition models, we
used the train and test data from Timir [17]. Additionally, we
trained phoneme models on a modification of 7imit where pitch-
shifting, time-stretching, and vibrato were applied to the audio
data. The process was described in [18]. This data set will be
referred to as TimitM.

3.1.2. Singing training data sets

For training models specific to singing, we used the DAMP data

set, which is freely available from Stanford University1[19].

This data set contains more than 34,000 recordings of amateur

singing of full songs with no background music, which were

obtained from the Smule Sing! karaoke app. Each performance
is labeled with metadata such as the gender of the singer, the

region of origin, the song title, etc. The singers performed 301

English language pop songs. The recordings have good sound

quality with (usually) little background noise, but come from a

lot of different recording conditions.

No lyrics annotations are available for this data set, but we ob-

tained the textual lyrics from the Smule Sing! website®. These

were, however, not aligned in any way. We performed such an
alignment on the word and phoneme levels automatically (see

section 4.1).

Out of all those recordings, we created two different sub-data

sets:

DampB Contains 20 full recordings per song (6000 in sum),
both male and female.

DampBB_small Same as before, but phoneme instances were
discarded until they were balanced and 60,000 frames
per phoneme were left (a bit fewer than the amount con-
tained in Timif). This data set is about 1.5% the size of
DampB.

3.2. Test data sets

In order to test our system on singing data, we used the data set
previously presented in [9]. It consists of unaccompanied songs
downloaded from YouTube®. The songs are performed by am-
ateur singers in the languages English, German, and Spanish.
We call it YTAcap. There are 116 performances (=documents)
per language (348 in sum). For some experiments, they were
split up into segments of 10-20 seconds at silent points (3,156
“utterances” in sum).

For comparison, we also tested our algorithm on the OGI Multi-
language Telephone Speech Corpus (OGIMultilang) [20], using
all recordings for the three previously mentioned languages.

Ihttps://ccrma.stanford.edu/damp/
2http://www.smule.com/songs
3http://www.youtube.com/



This gives us 3,177 utterances in sum with more varying du-
rations (1-60 seconds). For experiments on longer recordings,
results on these individual utterances were aggregated for each
speaker, producing 118 documents per language (354 in sum).
Order-13 MFCCs plus deltas and double-deltas were extracted
from all data sets and used in all experiments.

4. Proposed approach
The general process is shown in figure 1.
4.1. Lyrics alignment

Since the textual lyrics were not aligned to the singing audio
data, we first performed a forced alignment step. A monophone
HMM acoustic model trained on 7imit using HTK was used.
Alignment was performed on the word and phoneme levels us-
ing lyrics and recordings of full songs.

The resulting annotations were used in the following experi-
ments. Of course, errors cannot be avoided when doing auto-
matic forced alignment. Nevertheless, the results appear to be
very good overall, and this approach provided us with a large
amount of annotated singing data, which could not feasibly have
been done manually [21].

4.2. New acoustic models

Using these automatically generated annotations, we then
trained new acoustic models on DampB and DampBB_small.
Models were also trained on Timit and TimitM for comparison.
All models are DNNs with three hidden layers of 1024, 850,
and again 1024 dimensions. The output layer corresponds to 37
monophones. Inputs are MFCCs with deltas and double-deltas
(39 dimensions).

4.3. Phoneme recognition

Using these models, phoneme posteriorgrams were generated

on the test data sets YTAcap and OGIMultilang. To facilitate

the following language identification, phoneme statistics were
then calculated in two different ways:

Utterance-wise statistics Means and variances of the
phoneme likelihoods over each utterance were cal-
culated (or, in the case of YTAcap, over each song
segment). For further training, the resulting vectors
for each speaker/song (=document) were used as a
combined feature matrix. As a result, no overlap of
speakers/songs was possible between the training and
test sets.

Document-wise statistics Mean and variances of the phoneme
likelihoods over whole songs or sets of utterances of a
single speaker were calculated. This resulted in just two
feature vectors per document (one for the means, one for
the variances).

Naturally, relatively long recordings are necessary to pro-

duce salient statistics. For this reason, the aggregation by

speaker/song was done in both cases rather than treating each
utterance separately.

4.4. Language identification

We then trained Support Vector Machine (SVM) models on the
calculated statistics in both variants with the three languages as
annotations. Unknown song/speaker documents could then be
subjected to the whole process and classified by language.

All our results in the following section were obtained using 5-
fold cross-validation - i.e., SVMs were trained on 4/5 of each
corpus, then the remaining 1/5 was classified with the model.
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This was done 5 times until each song/speaker document had
been classified.

5. Experiments and results

5.1. Language identification using document-wise phoneme
statistics

In our first experiments, SVM classifiers were trained on the
document-wise phoneme statistics, and classification was also
performed on a document-wise basis (i.e., only one mean and
one variance vector per document). The results are shown in
figure 2 in terms of accuracy (average retrieval when all docu-
ments are classified into exactly one language) and average cost
as recommended in [22].

On the singing test set, results are worst when using acoustic
models trained on Timir at just 53% accuracy, and become better
when using the model trained on the 7imit variant modified for
singing or the small selection of the singing training set (59%
each). The best result is achieved when the models are trained
on the full singing data set at 63% accuracy and an average cost
of 0.12.

Surprisingly, the results on the OGI corpus also improve from
75% with the Timir models to 84% using the DampB mod-
els (average cost 0.05). Since Timit is a very “clean” data
set, we believe that training on the song corpus might provide
some more phonetic variety, acting as a sort of data augmenta-
tion. This could be especially important in this context where
phonemes are recognized in three different languages.

On both corpora, there is no noticeable bias of the confusion
matrix - i.e., the confusions are spread out evenly. This is par-
ticularly interesting when considering that the acoustic models
were trained on English speech or singing only.

W Timit @ Timit\ HTimit W TimitM
1 DampB il DampBB_small 0.2 DampB @ DampBB_small
0.8
> 0.15
g 06 o
5 Z 01
g 0.4 U
0.2 0.05
OGIMultilang YTAcap OGIMultilang YTAcap

(a) Accuracy (b) Average cost
Figure 2: Results using document-wise phoneme statistics gen-
erated with various acoustic models.

5.2. Language identification using utterance-wise phoneme
statistics

Next, we performed language identification with models trained
on the statistics of each utterance contained in the document.
The recognition process is still performed on the whole docu-
ment. The results are reported in figure 3.

Phoneme statistics may not be as representative when computed
on shorter inputs, but they may provide more information for
the backend model training when utilized as a combined feature
matrix for a longer document. The results on singing improve
slightly to 63% with the acoustic model trained on the small
singing corpus (DampBB_small) and decrease slightly for the
DampB model (61%). However, on the speech corpus, the best
result rises to 90%.
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Figure 1: Overview of the process for language identification using phoneme statistics.
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Figure 3: Results using utterance-wise phoneme statistics gen-
erated with various acoustic models.

5.3. For comparison: Results for the i-vector approach

For comparison, we also trained models on the same time scales
using our previous approach [10]. In this approach, i-vectors
are calculated, again on the utterance- or the document-wise
scale. This is done for PLP and MFCC features. The resulting
i-vectors are then used to train SVMs in the same manner as in
the previous experiments. The results are shown in figure 4.
The best result obtained on the singing test corpus is 68% ac-
curacy. This is only 5 percent points higher than the presented
approach, which is much easier to implement. On the OGI data
set, the difference is only 3 percent points (93%). Of course,
the advantage of the i-vector approach is that it can also be per-
formed on much shorter inputs.

(It should be noted that the results for Y7Acap here are different
from the ones reported in [10]. In this previous experiment, the
utterances were handled completely independent of each other).

B MFCCutterance @ MFCC document

1 B PLPutterance Ml PLP document 0.2 B PLPutterance W PLP document

0.8
0.15

e
o

0.1

CAvg

Accuracy
o
F-Y

0.05

OGIMultilang YTAcap

OGIMultilang YTAcap

(a) Accuracy (b) Average cost

Figure 4: Results using utterance- and document-wise i-vectors
calculated on PLP and MFCC features.

6. Conclusion

In this paper, we presented a new language identification ap-
proach for singing. It is based on the output of various acoustic
models, from which we generated statistics and trained SVM
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W MFCCutterance W MFCC document

models. In contrast to similar approaches for speech, we do
not perform voice tokenization. Since phoneme recognition on
singing is not always reliable, we instead calculate the statis-
tics directly on the phoneme posteriorgrams, although this does
not take any temporal information into account. Our acoustic
models were trained only on English-language material (speech
and singing). Due to the statistics-based nature of the approach,
it is not suited for language identification of very short audio
recordings.

The accuracy of the result for singing is somewhat worse than
the results obtained with the previous, i-vector based approach.
However, this new approach is much easier to implement and
the feature vectors are shorter. For many applications, such
posteriors might have to be extracted anyway and could then
efficiently used for language identification when long observa-
tions are available. The best accuracy of 63% is obtained with
acoustic models trained on a different singing corpus.
Interestingly, the best result on the OGI speech corpus is also
obtained with these acoustic models (and is only 3 percent
points below the one obtained with the i-vector approach). This
possibly happens because the singing corpora provide a wider
range of phoneme articulations. It would be interesting to try
out these acoustic models for other phoneme recognition tasks
on speech where robustness to varied pronunciations is a con-
cern.

7. Future work

Since this is a very basic first approach to language identifi-
cation on singing using phonotactic information, many direc-
tions of improvement are conceivable. As mentioned in section
2, many state of the art approaches employ voice tokenization.
Some adaptation to singing would be necessary for this, but this
could improve the result, particularly when used to model se-
quences of phonemes.

As mentioned, our acoustic models were trained only on
English-language data. It would be interesting to try out univer-
sal phoneme recognizers or acoustic models trained on different
languages. Multi-language labeled data is available for speech,
but not for singing. As described, we performed forced align-
ment of lyrics and singing recordings for a large corpus, which
was then used to train acoustic models. This could also be done
in other languages and would provide better insights into the
applicability of the approach to other languages.

As the results show, the models trained on singing appear to be
more robust to the phonetic variety of the three languages than
the ones trained on speech. This is even evident on the speech
test corpus. More research into this would be very interesting
- i.e. evaluating whether phoneme recognition becomes more
stable in other cases when models trained on singing are used.



[1]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

8. References

A. Kruspe, H. Lukashevich, J. Abesser, H. Grossmann, and
C. Dittmar, “Automatic classification of musical pieces into global
cultural areas,” in Proceedings of Audio Engineering Society 42nd
Conference, Ilmenau, Germany, 2011, pp. 44-53.

J. Aucouturier and F. Pachet, “Improving timbre similarity: How
high is the sky?” in Journal of Negative Results in Speech and
Audio Sciences, vol. 1, 2004.

E. Singer, P. A. Torres-Carrasquillo, T. P. Gleason, W. M. Camp-
bell, and D. A. Reynolds, “Acoustic, phonetic, and discriminative
approaches to automatic language identification,” in Proceedings
of Eurospeech, Geneva, Switzerland, 2003, pp. 1345-1348.

H. Fujihara and M. Goto, Multimodal Music Processing.
Dagstuhl Follow-Ups, 2012, ch. Lyrics-to-audio alignment and its
applications.

J. Schwenninger, R. Brueckner, D. Willett, and M. E. Hennecke,
“Language identification in vocal music,” in 7th International
Conference on Music Information Retrieval (ISMIR), Victoria,
Canada, 2006, pp. 377-379.

W.-H. Tsai and H.-M. Wang, “Towards automatic identification
of singing language in popular music recordings,” in 5th Inter-
national Conference on Music Information Retrieval (ISMIR),
Barcelona, Spain, 2004, pp. 568-576.

M. Mehrabani and J. H. L. Hansen, “Language identification for
singing,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Prague,
Czech Republic, 2011, pp. 4408-4411.

V. Chandraskehar, M. E. Sargin, and D. A. Ross, “Automatic lan-
guage identification in music videos with low level audio and
visual features,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP),
Prague, Czech Republic, 2011, pp. 5724-5727.

A. Kruspe, J. Abesser, and C. Dittmar, “A GMM approach to
singing language identification,” in AES 53, London, UK, 2014.

A. M. Kruspe, “Improving singing language identification
through i-vector extraction,” in Proceedings of the 17th Interna-
tional Conference on Digital Audio Effects (DAFx-14), Erlangen,
Germany, 2014, pp. 227-233.

M. A. Zissman, “Comparison of four approaches to automatic lan-
guage identification of telephone speech,” IEEE Transactions on
Speech and Audio Processing, vol. 4, no. 1, pp. 31-44, Jan. 1996.

H. Li and B. Ma, “A phonotactic language model for spoken lan-
guage identification,” in Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics, ser. ACL 05,
2005, pp. 515-522.

P. Matejka, P. Schwarz, J. Cernocky, and P. Chytil, “Phonotactic
language identification using high quality phoneme recognition,”
in INTERSPEECH, 2005.

K. M. Berkling, “Automatic language identification with se-
quences of language-independent phoneme clusters,” Ph.D. dis-
sertation, Oregon Graduate Institute of Science & Technology,
1996.

H.Li, B. Ma, and C.-H. Lee, “A Vector Space Modeling Approach
to Spoken Language Identification,” IEEE Transactions on Audio,
Speech & Language Processing, vol. 15, p. 271-284, 2007.

M. Peche, M. H. Davel, and E. Barnard, “Phonotactic spoken
language identification with limited training data,” in INTER-
SPEECH, Antwerp, Belgium, 2007, pp. 1537-1540.

J. S. Garofolo et al., “TIMIT Acoustic-Phonetic Continuous
Speech Corpus,” Linguistic Data Consortium, Philadelphia, Tech.
Rep., 1993.

A. M. Kruspe, “Training phoneme models for singing with
”songified” speech data,” in 15th International Conference on
Music Information Retrieval (ISMIR), Malaga, Spain, 2015.

J. C. Smith, “Correlation analyses of encoded music perfor-
mance,” Ph.D. dissertation, Stanford University, 2013.

3323

[20]

[21]

[22]

R. Cole and Y. Muthusamy, “OGI Multilanguage Corpus,” Lin-
guistic Data Consortium, Philadelphia, Tech. Rep., 1994.

A. M. Kruspe, “Bootstrapping a system for phoneme recognition
and keyword spotting in unaccompanied singing,” in 17th Interna-
tional Conference on Music Information Retrieval (ISMIR), New
York, NY, USA, 2016.

“The 2015 NIST Language Recognition Evaluation Plan
(LRE1S5),” NIST, Tech. Rep., 2015.



	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Anna M. Kruspe
	----------

