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Abstract
Non-negative matrix based language models have been recently
introduced [1] as a computationally efficient alternative to other
feature-based models such as maximum-entropy models. We
present a new entropy based pruning algorithm for this class of
language models, which is fast and scalable. We present per-
plexity and word error rate results and compare these against
regular n-gram pruning. We also train models with location and
personalization features and report results at various pruning
thresholds. We demonstrate that contextual features are help-
ful over the vanilla model even after pruning to a similar size.
Index Terms: sparse non-negative matrix based language
model, entropy based pruning, contextual features, personaliza-
tion, adaptation, geolocation

1. Introduction
Classical n-gram models are computationally efficient. This
single fact is probably the most likely explanation of their prac-
tical success. On the other hand they are also very limited and
inflexible in terms of the features that these models make use
of. Extending these models to make use of a wider variety of
features (such as skip-grams, sub-word features, contextual fea-
tures etc.) usually involves either coming up with new tailored
smoothing solutions, or giving up the computational advantages
of n-gram models.

For incorporating contextual features (such as geolocation,
time of day or user id) maximum entropy models have been uti-
lized to some degree of success [2]. The problem with these
models is that training involves calculating normalized proba-
bilities, which for large vocabularies become computationally
prohibitive. As a result, approximations such as classes at the
output layer and sampling have been tried [3, 4]. While they
speed things up considerably, none of these approaches come
close to the parallelizability and efficiency of an n-gram model.

Another approach, for contextual features such as geoloca-
tion and user id, is to train separate n-gram models for each
context, and interpolate the context specific small LM with a
larger generic LM [5]. This approach has been shown to pro-
vide perplexity reductions, but suffers from data sparsity and
size heterogeneity issues.

Recently, a new class of language models have been pro-
posed under the name of ‘Sparse non-negative matrix based
language models’ (SNMLM) [1]. These models combine the
flexibility of incorporating arbitrary features, like maximum
entropy models, with the computational efficiency that comes
from feature-count based models like n-gram models.

Combining arbitrary features in an SNMLM leads to a sig-
nificant blow up of model size. In a production environment
with memory constraints, these models need to be pruned to a

reasonable size. Here we will outline an entropy based pruning
approach suitable for SNMLM that has parallels to the often
used entropy based pruning [6] for n-grams.

In the next section we will detail the workings of an SN-
MLM including training and evaluation. Then we will outline
our pruning algorithm. In section 4 we compare the perfor-
mance of SNMLM at various pruning levels to a production-
grade model smoothed with modified absolute discounting [7],
as well as a mutual information (MI) based pruning heuristic
that has been proposed in [8]. Following this, we will add con-
textual features (geolocation and user id) to an SNMLM and
report performance improvements in both perplexity (PPL) and
word error rate (WER) metrics. Finally we will conclude with
a summary and potential future directions.

2. Sparse non-negative matrix based
language models

This section provides a summary of the model as described in
[1], as well as establishing needed notation for the sections that
follow.

A language model is a function which takes as input a con-
text, and outputs a distribution over a vocabulary V:

PLM (w|h)

Where h is the word context, including previous word history
and any contextual information. We will represent h with a bi-
nary vector f , which represents a sparse k-of-many encoding of
a large feature set F. The set of features is part of the model de-
sign, but usually includes n-gram features, contextual features
and combinations thereof. The cardinality of the feature set will
be very large, but only a few entries in f will be non-zero at any
one time. As an example, let F be composed of trigram, bigram
and unigram features. Consider the following sentence:

[s] the quick brown fox [/s]

Active features in the probability calculations of the word
‘brown’ would be:

f=Set{
Unigram (empty feature): ‘ ’,
Bigram: ‘quick’,
Trigram: ‘the quick’ }

Now, each feature f ∈ F has a weight associated with each
target word w ∈ V . We represent this weight function, which
depends on the tuple (w, f), by a matrix M(w, f). We denote
each entry in short by Mij , where j is the target word index,
and i the feature index. In matrix notation, this gives us:

y = Mf
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where y is a dense score vector over the vocabulary V . To make
this into a distribution, we normalize to get

PLM (w|f) =
y

|y| =

∑
i∈f Miw∑

i∈f
∑

j Mij
≡
∑

i∈f Miw∑
i∈f Mi∗

(1)

where Mi∗ is the column sum for feature i. So far, we have
discussed little more than notation. Many classes of language
models could be described in this matrix framework. The fol-
lowing form for the weights Mij defines the SNMLM:

Mij = eA(i,j)Cij

Ci∗
(2)

Here A(i, j) is an adjustment function, akin to a smoothing
term, to be trained,Cij is the occurrence count of the tuple (i, j)
in the training data, and Ci∗ is the count of feature i. Thus, the
weight Mij is just the modified maximum likelihood probabil-
ity of word j given feature i. The final probability estimation
is calculated by interpolating the estimates from all active fea-
tures, as given in eq. 1.

2.1. Training the adjustment function

The adjustment functionA(i, j) is trained against a Poisson loss
function:

LPoisson(y, w) = − log (PPoisson(w|f)) (3)

= − log (yw) +
∑
j∈V

yj (4)

This loss was chosen to avoid terms that sum over the entire
vocabulary in the gradient calculation.

The gradient update is calculated to be (see [1] for details.):

∂LPoisson(y, w)

∂A(i, j)
= fiMij

(
Ci∗

Cij
− 1

yj

)
,

if j = w and 0 otherwise (5)

2.2. Meta-features

Having a separate featureA(i, j) for each (i, j) would be prone
to overfitting, so some parameter tying is necessary. This is
accomplished by having the adjustment term depend on several
meta-features αk(i, j). A simple sum of these then define the
A(i, j):

A(i, j) =
∑
k

αk(i, j) (6)

Picking the metafeatures is a feature engineering problem, how-
ever the following have been proposed as candidates:

• Target word identity j

• Feature identity i

• Binned log count Cij

• Binned log count Ci∗

• Feature type (e.g. 2-gram, 3-gram, skip gram, location
etc.) and combinations thereof.

2.3. Leave-one-out training

Since the counts that define the model are also being used to
train the metafeatures, leave one out training is used to prevent
overfitting to the counts. This is done by excluding the current
training example from the counts when calculating the gradient.
If we write αk(i, j, Cij , Ci∗),Mij(Cij , Ci∗), yj(Cij , Ci∗) to

show the explicit dependence on the counts, we modify the gra-
dient as:

∂LPoisson(y, w)

∂A(i, j)
= fiMij(Cij , Ci∗ − 1)

Ci∗ − Cij

Cij

+ fiMij(Cij − 1, Ci∗ − 1)

(
1− 1

yj(Cij − 1, Ci∗ − 1)

)
,

if j = w and 0 otherwise (7)

2.4. Implementation details

The metafeature vector is implemented as a flat hash table of
sufficient size. Collisions are present, but don’t affect the final
result significantly. Adagrad[9] is used for optimization, where
the adaptive learning rate at the N th occurrence of (i, j) is:

µk,N (i, j) =
γ√

∆0 +
∑N

1 δn(ij)2
(8)

Here δn(ij) denotes the value of the gradient at the nth occur-
rence. We pick ∆0 = 1 and γ = 10−3.

2.5. Training of hash table

In contrast to calculating counts, which can easily be paral-
lelized, the training of the metafeature vector is an inherently se-
quential operation. While there are several possible approaches
to get around this bottleneck, such as parallelization based on
model averaging or mini-batch training, in practice we observe
that the metafeatures do not need to be trained on the full data
set. The most important metafeatures can be sufficiently trained
with only a small fraction of data. Therefore we sub-sample the
data to a subset of several million tokens for training the hash
table, which proved sufficient for our purposes.

3. Entropy based pruning
Our approach is similar to entropy based pruning for regular n-
gram models [6]. For each feature-target pair, we calculate the
change in entropy resulting from removing this parameter from
the model. We then rank parameters according to this score, and
use a suitable threshold to prune our model. Thus, the effect of
each parameter is considered independently, and joint effects
are ignored, as in the n-gram case.

In contrast to regular n-gram models, SNMLM models are
not completely generative. p(w, f) is not specified by the model
because the joint probability of the co-occurrences of various
features are not modeled. It only produces probabilities p(w|f),
conditioned on a given set of features in a discriminative man-
ner. Therefore, it is not possible to do entropy based pruning as
a strictly post-processing step. We need to start from the train-
ing data to learn about the prior co-occurrence probabilities of
the features.

From eq. 1 we can see that the train set entropy of a given
model is given by

HT =
∑
(w,f)

− log

∑
k∈f Mkw∑
k∈f Mk∗

(9)

where the sum is running over all the words in the training set.
Removing a feature-target pair (i, j) from the model affects all
terms in which Mij appears, as well as all the terms in which
Mi∗ appears. Running through the entire data for each feature is
obviously infeasible. Some effort is necessary to calculate the
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entropy change for all feature-target pairs in linear time with
respect to the size of the training data.

Let p′ be the probability after removing a particular Mij

from the model. We can write (all the sums are over k ∈ f ):

log p′(w, f) = log

∑
Mkj −Mij∑
Mk∗ −Mij

= log

∑
Mkj∑
Mk∗

− log

(
1− Mij∑

Mk∗

)
+ log

(
1− Mij∑

Mkj

)
= log p(w, f)− log

(
1− Mij∑

Mk∗

)
+ log

(
1− Mij∑

Mkj

)
(10)

if w is equal to j and i is in f . Otherwise if w is not equal to j,
but i is in f ,

log p′(w, f) = log

∑
Mkj∑

Mk∗ −Mij

= log

∑
Mkj∑
Mk∗

− log

(
1− Mij∑

Mk∗

)
= log p(w, f)− log

(
1− Mij∑

Mk∗

)
(11)

Therefore the entropy difference can be written as∑
(w,f)

log p(w, f)− log p′(w, f) =
∑

(w,f):i∈f

log

(
1− Mij∑

Mk∗

)

−
∑

w=j,i∈f

log

(
1− Mij∑

Mkj

)
(12)

The second term can be calculated for all Mij with only a sin-
gle pass through the data, since the sum only runs over the
terms where Mij appears. The first term however, potentially
runs over a large portion of the data, if a particular feature
is very common (e.g. the empty feature appears in all en-
tries). To get around this issue, we make the approximation
log
(

1− Mij∑
Mk∗

)
≈ − Mij∑

Mk∗
. We justify this by observing

that
∑
Mk∗ always includes the empty feature, which is very

large, therefore the fraction in question is almost always very
small, making this a good approximation. With this we get∑
(w,f)

log p(w, f)− log p′(w, f) ≈ −Mij

∑
(w,f):i∈f

1∑
Mk∗

−
∑

w=j,i∈f

log

(
1− Mij∑

Mkj

)
(13)

Here the quantity
∑

(w,f):i∈f
1∑
Mk∗

can be calculated for all i
with only a single pass through the data. We use the absolute
value of this quantity to put a threshold on Mij .

Since the pruning is based on the change in train set en-
tropy, this approach is prone to over-fitting the training data
and under-performs for this reason. The fundamental prob-
lem is that we’re taking an expectation over the train set dis-
tribution pT (w, f) instead of the model distribution pM (w, f),

which is not fully defined. However the conditional distribution
pM (w|f) is defined, so we can use pM (w|f)pT (f) to replace
pT (w|f)pT (f) = pT (w, f) in taking the expectation. This
means adjusting each term in eq. 13 with the factor

pM (w|f)

pT (w|f)
=

∑
Mkj∑
Mk∗

|f |∑ Ckj

Ck∗

≡ θ(w, f).

The new estimate for the change in entropy becomes

−Mij

∑
(w,f):i∈f

θ(w, f)∑
Mk∗

−
∑

w=j,i∈f

θ(w, f) log

(
1− Mij∑

Mkj

)
(14)

With this adjustment, pruning performs as well as regular en-
tropy based n-gram pruning.

3.1. Mutual information based pruning

We will compare our approach to the heuristic that was pro-
posed in [8]. There, features are pruned based on the mutual
information-like threshold function:

MIij =
Cij

C∗∗
log

CijC∗∗
Ci∗C∗j

(15)

4. Experiments
As pointed out in the introduction, the main draw of SNMLMs
is their flexibility in incorporating arbitrary features efficiently.
We were also motivated by this, since in a production setting,
many contextual signals are available to us and could be used to
improve the performance of our language models. Therefore we
chose to test on real data from practical applications that have
contextual features available for experimentation. Nevertheless,
for reference, we will present a few numbers comparing our SN-
MLM with only n-gram features to classical n-gram models at
various pruning thresholds. After that, we will add location la-
bels and user id’s to the feature set and report improvements.
Then we prune our contextual SNMLM model down to a rea-
sonable size and show that the improvements persist. The WER
experiments were conducted as N-best re-scoring on first-pass
recognition outputs, which were taken from production results
where each utterance was recognized with a large production
LM. The production LM was a 5-gram model trained from a
large body of text covering all domains relevant to the appli-
cation. The acoustic model was a sequence trained context-
dependent DNN model with a front-end of 29 logfilter bank
features and their first and second derivatives. The N-best or-
acle WER relative to the 1-best baseline is around 40%. Re-
sults are reported as percentage WER reduction (WERR) over
this baseline. Absolute perplexity difference of around 2 and
WERR difference of 0.5% are significant at a p level of 0.05.
Before we summarize our results, we describe our data set.

4.1. Data

Our data set is a combination of text queries and unsupervised
recognition output from voice utterances that are sent to Cor-
tana, Microsoft’s virtual voice assistant. We work with a set
of around 220 million US-English sentences, which consist of
nearly 1.2 billion tokens. Each sentence has a geolocation and
anonymized user id associated with it. The geolocation coordi-
nates are pre-clustered into 500 clusters by a k-means algorithm.
We use the resulting cluster labels as our location feature. This
is similar to using ‘market area’ descriptors that has been re-
ported in [10], but is slightly less arbitrary. We use the user id’s
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PPL
#params n-gram entropy-

pruned
MI-
pruned

630M 73.1 75.1 75.1
280M 74.1 77.1 78.3
140M 74.6 79.3 80.4
77M 75.3 81.6 83.1
37M 77.2 86.2 86.7
17M 79.4 93.5 92.6
11M 82.7 99.0 98.5
4M 97.3 107.6 110.0

Table 1: Comparing the perplexity of an entropy pruned n-gram
ARPA model to SNMLM under entropy-based pruning and MI-
based pruning.

WERR
#params n-gram entropy-

pruned
MI-
pruned

630M 4.82 5.17 5.17
280M 5.36 4.77 4.55
140M 5.40 4.65 4.60
77M 5.55 4.62 4.67
37M 5.02 4.72 4.22
17M 4.93 4.34 4.10
11M 4.56 4.25 4.01
4M 4.15 4.04 3.97

Table 2: Comparing the percentage WER reduction over a base-
line (WERR) of an entropy pruned n-gram ARPA model to SN-
MLM under entropy-based pruning and MI-based pruning.

as is. The test set is similar, but comes from a later, disjoint
date range, and consists of around 50,000 manually transcribed
Cortana voice utterances. We restrict the vocabulary to the top
600k words.

4.2. SNMLM vs. n-gram

SNMLM can be trained with only n-gram features, providing a
direct comparison with smoothed n-gram models. Tables 1 and
2 compare the perplexity and WER reduction (WERR) of an en-
tropy pruned n-gram ARPA model to SNMLM under entropy-
based pruning and MI-based pruning of [8] at various pruning
levels. When compared directly to a 5-gram model with modi-
fied absolute discounting, SNMLM n-gram model performs on
average 10% worse in terms of perplexity. The entropy based
pruning works as well in both cases, limiting the perplexity
degradation to around 10% for every 8-9x reduction in model
size. The pruning heuristic described in [8] does remarkably
well, almost matching and sometimes even beating the entropy-
pruned SNMLM in perplexity, however falls short in WER met-
rics.

4.3. SNMLM with contextual features

The main value proposition of SNMLM is the ability to incor-
porate contextual features cheaply. We experiment with two
of these: location and personalization features, as described in
section 4.1 above. In table 3 we compare an n-gram SNMLM
model with location features only, with personalization features

model PPL WERR
n-gram SNMLM 75.1 5.17
+location 69.2 6.26
+user id 59.8 5.45
+location+user id 55.4 6.80

Table 3: Comparison of n-gram SNMLM with contextual fea-
tures added.

PPL WERR
#params entropy-

based
MI
based

entropy-
based

MI
based

4.8B 55.4 55.4 6.80 6.80
1.1B 58.4 60.6 6.11 5.90
460M 60.8 63.2 6.02 6.11
290M 63.6 65.0 6.04 5.62
140M 69.6 70.1 5.90 5.29
78M 77.5 73.7 5.62 4.91

Table 4: Comparing entropy-based vs. MI-based Pruning of
SNMLM with location and user id features.

only, and with the combination of both. Since each contextual
feature produces its own set of n-gram features, adding contex-
tual features expands the feature space greatly. The unpruned n-
gram SNMLM has 630 million parameters. For SNMLM with
location features, this number grows to 1.98 billion. With per-
sonalization features, it is 3.4 billion. And with both features
added, the model has 4.8 billion features. We see that adding
each feature results in both perplexity and WER improvements.
Stacking features give additional gain, although not completely
additive.

While the gains from adding contextual features are sig-
nificant, the huge expansion in model size can be prohibitive
in production settings. Furthermore, it is not clear if the gains
are simply a result of adding more parameters to the model, or
if the novel contextual information is actually helping. After
pruning the contextual model (location+user id) to a more rea-
sonable size, we can see in table 4 that contextual models do
have an advantage of pure n-gram SNMLM models even when
pruned down to a comparable size. Comparison with the MI-
based pruning yields similar conclusions as in the n-gram case.

5. Conclusion
An efficient entropy-based pruning algorithm for non-negative
matrix-based language models has been demonstrated. We
showed that the algorithm performs competitively with a com-
monly used entropy pruned n-gram model smoothed with mod-
ified absolute discounting. We also showed that SNMLM
trained with contextual features, such as location and person-
alization features, outperform vanilla SNMLM models, even
when pruned down to similar size. Future work includes in-
corporating more contextual features, such as time, gender, app
context etc. Also, deeper investigation into the training of meta-
features may lead to further optimizations in speed and perfor-
mance.
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