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Abstract
Speaker diarisation, the task of answering “who spoke when?”,
is often considered to consist of three independent stages:
speech activity detection, speaker segmentation and speaker
clustering. These represent the separation of speech and non-
speech, the splitting into speaker homogeneous speech seg-
ments, followed by grouping together those which belong to
the same speaker. This paper is concerned with speaker clus-
tering, which is typically performed by bottom-up clustering
using the Bayesian information criterion (BIC). We present a
novel semi-supervised method of speaker clustering based on
a deep neural network (DNN) model. A speaker separation
DNN trained on independent data is used to iteratively rela-
bel the test data set. This is achieved by reconfiguration of the
output layer, combined with fine tuning in each iteration. A
stopping criterion involving posteriors as confidence scores is
investigated. Results are shown on a meeting task (RT07) for
single distant microphones and compared with standard diari-
sation approaches. The new method achieves a diarisation error
rate (DER) of 14.8%, compared to a baseline of 19.9%.
Index Terms: speaker diarisation, speaker separation, deep
neural network

1. Introduction
Speaker diarisation is the task of answering “who spoke when?”
in an audio recording [1, 2]. Three stages are considered:
speech activity detection, where speech-only segments of time
are found; speaker segmentation, or speaker change detection,
where these segments are split into speaker homogeneous seg-
ments; and finally speaker clustering, in which the segments are
grouped into same-speaker clusters. Diarisation has been well
studied over the years, and several toolkits are available for this
task, however most are designed to perform well for a specific
type of data [4, 5, 6]. The most common method of speaker
clustering is agglomerative hierarchical clustering (AHC), also
known as bottom-up clustering, using the Bayesian informa-
tion criterion (BIC) as the decision metric and stopping crite-
rion. This can occur in iterations of Viterbi realignment using
speaker models based on the previous clustering iteration [3].
This paper presents a novel method of speaker clustering using
deep neural networks. Traditionally being an unsupervised task,
speaker clustering with discriminate classifiers, such as DNNs
has not been successful. This is due to the difficulty discrimi-
nate classifiers have with mislabelled data.

In previous work integrating neural networks into a speaker
diarisation system, a speaker segmentation stage using auto-
associative neural networks (AANN) was proposed [7]. A win-
dowing method is used where an AANN model is trained for
the left half of the window and tested on the right to give a
confidence score on how likely each part belongs to the same
speaker. More recently, artificial neural networks (ANN) have
been trained to learn a feature transform [8, 9]. DNN senone

posteriors have also been combined with i-vector extraction
[10]. The method we present involves training a DNN which
learns how to separate speakers. DNNs which can classify
speakers have been implemented in the speaker recognition
field [11] which involves projecting acoustic features into a
lower-dimensional feature set. Our own previous work has also
implemented speaker separation DNNs [12].

The method proposed in this paper was partially introduced
in our diarisation system [12] and ASR system [13] for the
MGB challenge 2015 [14]. DNNs are iteratively adapted, where
a previously trained speaker separation DNN is retrained using
an initial clustering output. The DNN resegments and reclusters
the data. This gave an absolute DER improvement of 2%. How-
ever, this configuration is limited to situations where an initial
clustering is available. This paper presents the extension of this
adaptation to speaker clustering, having removed the need of a
prior clustering. For implementing this novel speaker cluster-
ing method, two prerequisites are necessary: a DNN trained to
classify speakers; and a speech/non-speech segmentation of the
audio file. This speech/non-speech segmentation can contain
speaker-homogeneous segments or be speech-only. A DNN for
each audio file is iteratively built and adapted given the input
segments. The segments are relabelled every iteration, with an
option to allow speaker boundaries to occur within the speech
segments. This is speaker segmentation. Methods of filtering
the data used for adaptation allows to improve purity. Bene-
fits of an automatic stopping criterion over a fixed number of
iterations is investigated. The method is evaluated on an estab-
lished test set, meeting data from the NIST Rich Transcription
evaluations in 2007 (RT’07) [16].

The proposed method is presented in Section 2, which con-
sists of training the speaker separation DNN, reconfiguring the
final layer and finally the stopping criterion. Methods of fil-
tering the input data the segmentation used for adaptation are
detailed in Section 3. The experimental setup is covered in Sec-
tion 4 and finally, the results are shown in Section 5.

2. Speaker clustering using DNNs
The DNN-based speaker clustering method is semi-supervised
as it requires a speaker separation DNN (ssDNN) to be trained
beforehand. Also, speech segments are required as input into
the clusterer. The algorithm in depicted in Figure 1. The it-
erative process begins by building new DNNs based on the ss-
DNN, one for each audio file. The final layer of the ssDNN is
removed and replaced and adaptation is carried out using the
input speech segments. Decoding is carried out on these same
segments which can allow speaker segmentation and the data is
relabelled. If the stopping criterion is met, the relabelled seg-
ments are the final output, otherwise the process is repeated us-
ing the output segments as the new segments for updating the
network in the next iteration.

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-1262185



A) 368:1000:1000:1000:26:2495   B) 368:1000:1000:1000:26:?

Build DNN

Adapt DNN

Viterbi decode

Stopping criterion

Speech   
segments     ssDNN

Labelled   
segments     

Figure 1: The algorithm is depicted where the solid line repre-
sents the input speech segments and the dashed line represents
the ssDNN.

.

2.1. Speaker separation DNN (ssDNN)
For the semi-supervised part of the method, a DNN is trained
which learns how to separate, or classify, speakers. This is car-
ried out by training a network which has several hidden layers,
including a bottleneck layer. This bottleneck layer aims to cap-
ture the key information necessary to classify what has been
learnt, in this case the target classes are speakers. It is assumed
that the network is working in a similar way as to how bottle-
neck features are produced, such as i-vectors [15]. This assump-
tion leads to the next stage in the method, where the final layer
is replaced.

2.2. Reconfiguring the final layer
For each audio file, new DNNs are derived from the ssDNN.
The final layer is removed and replaced by an initial untrained
final layer. The use of the ssDNN as a starting point is to use its
knowledge of how to separate different speakers, ideally cap-
tured at the bottleneck.

The built networks are then adapted using the provided
speech segments. These could be speaker homogeneous or
speech only segments. The initial iteration begins by adapting
the built DNN with these segments, where each segment has
a distinct label, i.e. a label representing the segment number.
These are the target classes for the DNNs. This is equivalent to
the standard approach of bottom-up clustering where each seg-
ment begins as a separate cluster. This adaptation of the built
networks can occur in any number of adaptation iterations, as
opposed to iterations of the algorithm. However, it was found
that a single iteration of the adaptation stage was sufficient.

Viterbi decoding occurs on the same speech segments used
for adapting the DNNs. Decoding can occur frame-by-frame
which allows the input speech segments to split to obtain
speaker boundaries. This produces a relabelled and reseg-
mented output of the input speech segments. The method imple-
mented in this way allows for speaker segmentation at the same
time as speaker clustering. If wishing to keep the same segment
boundaries and prevent speaker segmentation from occurring,
the log probabilities for each segment can be considered. The
class with the highest average log probability per frame is cho-
sen for that segment.

If the stopping criterion is met, the relabelled segments out-

put from the decoding stage are the final output. Otherwise, the
iterative process begins again. The target classes for the next
iteration, the number of nodes in the final layer, are the classes
found in the decoding output. The data for adaptation is the la-
belled output segments. If a target class has found no data in the
decoding, the class is removed from the adaptation. This means
classes can be lost, but never gained.

2.3. Stopping criterion
As in all clustering algorithms, it is key to know when to cease
iterations of clustering. In speaker diarisation, the aim is to stop
clustering when the correct number of speakers is reached, but
this is unknown. Here each audio file is treated independently.
A simple method for stopping would be to stop training after a
set number of iterations, this being the same for each audio file.

A more advanced stopping criterion varies for each audio
file, such as the ∆BIC in standard methods. Several options
exist for choosing a stopping criterion: an average probability
per frame; the minimum probability; or the maximum probabil-
ity across all segments. The percentage of change between the
current iteration and previous iteration can be calculated. Once
the change is less than a decided threshold, the iterations cease.
The lower the change implies the system is heading towards
convergence. Best results were obtained using the percentage
of change of the average probability per frame between itera-
tions.

3. Data Filtering
Discriminant classifiers behave badly when presented with im-
pure data. The speech segments used for adaptation are vital to
be as pure as possible, in terms of speaker error. Small errors
here would lead to errors being learnt by the DNNs and poten-
tially increasing every iteration. Selecting pure segments for
adaptation would give the system a better starting point. This
can occur in two parts of the system: the input speech segments;
and decoding the segments.

3.1. Improving purity
There are various ways to refine and improve upon the input
segments used for adaptation. The input speech segments in the
first iteration are from the provided speech/non-speech segmen-
tation, where the speech-only segments are used. All further
iterations derive the adaptation data from the decoded output in
the previous iteration.

Short segments can cause problems as they contain little in-
formation to base an entire speaker on each in the first iteration.
One option is to remove them completely from the adaptation
stage. This allows longer segments, which contain more infor-
mation, to be used. The decoding will still occur using all the
segments but these will be filtered by time for each adaptation
stage.

Further to filtering by time, DNNs do work better when pre-
sented with more data. Knowing initially the short segments
could disrupt the adaptation, with each iteration the amount of
filtered short segments could be reduced. This assumes each
adaptation iteration is getting closer to stability and conver-
gence.

If the provided speech-only segments are allowed to split
(creating speaker boundaries) during the decoding, then these
provided segments which have been given more than one class
can be removed from the next adaptation iteration. This could
help to reduce impure segments being given to the DNN for it
to adapt to, avoiding adapting to incorrect data.
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3.2. Decoding
Decoding is carried out on all the provided speech-only seg-
ments. There are several ways to improve and tune the decoding
stage. First, a fixed state duration using hidden Markov models
(HMMs) can be enforced. It must be noted that a state dura-
tion longer than a segments length will cause this segment not
to be decoded, thus removed from the output. This can cause
missed speech in the final scoring. To avoid this missed speech,
any segment less than the state duration can be decoded frame
by frame. The prior probabilities for each target class can also
be varied, opposed to keeping every class at an equal probabil-
ity of occurring. This allows classes represented by more data
to have a higher probability and thus be more likely to be se-
lected for a segment. Lastly, the grammar scale factor can be
varied. Changing this helps to balance acoustic and language
model scores.

4. Experimental Setup
The configuration for the ssDNN training, DNN adaptation and
experiments are described below. The data used as test along
with the evaluation metrics and baseline systems are also de-
scribed.

4.1. Data
Experiments are carried out on NIST RT’07 meeting data [16].
This is a standard dataset for speaker diarisation produced
by NIST for evaluation purposes. Single distant microphone
(SDM) audio is used and the dataset consists of 8 meetings with
a total of 35 speakers. Manual reference segmentation has been
produced for RT’07 to the accuracy of 0.1 second. This means
the results displayed on this paper are not comparable with pre-
vious published RT’07 results. The updated manual reference
is avaliable from our website1. This has allowed for completely
speaker pure segments to be used in our DNN adaptation, and
the overlapping portions have been removed. There are 10847
non-overlapping segments.

4.2. DNN training
DNNs were trained using filterbanks of 23 dimensions with
a context window of 16 frames on both sides. Log Mel-
filterbanks are used as opposed to Mel frequency cepstral coef-
ficients (MFCCs) as they are found to yield better performance
with DNNs [18]. The ssDNN is trained on meeting data in the
AMI corpus [19]. Individual headset microphone audio (IHM)
is used. The input layer has 368 nodes, four hidden layers have
1745, and a bottleneck layer is used with 13 nodes. The final
output layer has 183 nodes, representing 183 speakers. Differ-
ent ssDNNs were tested where the number of hidden layers, size
of the hidden layers and the size of the bottleneck was varied.
The configuration described produced the lowest DERs.

4.3. Measuring diarisation performance
Diarisation error rate (DER) is the standard metric for speaker
diarisation. It is the sum of three frame error values: miss
(MS), false alarm (FA) and speaker error (SE) [1, 2, 20]. Missed
speech refers to reference speech detected as silence, false alarm
is reference silence detected as speech, and speaker error mea-
sures the percentage of scored time in which a speaker label is
assigned to the wrong speaker. The definition of DER was es-
tablished by NIST [16], which also includes a “collar”, typically
0.25 seconds. The reason for the collar is to allow for human
errors in the reference, any error values inside the collar time
are not counted. However, as the manual reference segments
are used, the collar is set to 0.0 seconds.

1mini.dcs.shef.ac.uk/resources/dia-improvedrt07reference/

Baseline DER #spkrs #segs
speaker-cluster 19.9 29 10689
SHoUT 26.6 41 11522

Table 1: Two baseline methods showing the DER, number of
speakers (#spkrs) and number of segments (#segs).

4.4. Baseline experiments
Two baselines are implemented. The first is our own speaker
clustering tool, referred to as speaker-cluster, which implements
a standard method in the field of speaker diarisation: bottom-
up clustering using BIC as the decision metric and as the stop-
ping criterion. This does a single pass of speaker clustering
and thus does not resegment the data. The second is a public
domian toolkit, SHoUT [6]. It is designed for diarisation of
meetings and uses BIC segmentation and BIC stopping crite-
rion in an unsupervised model training regime. The manual ref-
erence segmentation is given which runs a rough clustering for
initial speaker models and then resegments the data using these
models in several passes. This changes the speech/non-speech
segmentation.

5. Results
Results have been divided into three types of experiments: base-
lines, fixed number of training iterations, and invoking a stop-
ping criterion. The latter two result in no missed or false alram
speech due to using the reference segmentation.

5.1. Baselines
The results for the two baselines are shown in Table 1. The
speaker-cluster tool achieves a DER of 19.9%. As it does
not resegment the input, it produces 0.0% FA but it does pro-
duce 0.1% MS due to ignoring segments of little length (less
than 3 frames). However, SHoUT does resegment in terms of
speech/non-speech so the overall DER of 26.6% is higher than
the speaker cluster tool due to causing MS and FA. It is not
a comparable number because of this issue, so the baseline of
19.9% will be used.

5.2. Fixed iterations
Results for the experiments which stop after a fixed number of
training iterations are shown in Table 2, and the scores are taken
after 5 iterations. Figure 2 displays results from 10 iterations of
the final experiment. Two audio recording results are displayed.
They show the progression of the DER, the number of speakers
and probability scores. The fifth iteration was decided upon as
the number of speakers settles across the files at iteration 5.

A first experiment was performed where the provided seg-
ments where forced not to split, speaker segmentation was pre-
vented. Despite the segmentation being the reference, it per-
forms poorly. This is compared to allowing the input speech
segments to split. This improves the DER down to 29.8% and
finds more speakers. It does however more than double the
number of segments produced. Next, at each iteration, 25%
of the time in the shortest segments is removed, again reducing
the DER. Both the number of speakers and number of segments
increase. Implementing a state duration of 30 states, reduces
the number of segments, speakers and DER. In the penultimate
experiment, reducing the amount of time filtered and removing
the split segments from the training at each iteration produces
further gains, although the number of speakers drops below the
reference number. The last experiment changed the grammar
scale factor from 1 to 6. This causes a decrease in DER to
14.9% and has found the correct number of speakers overall.
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System DER #spkrs #segs #iters
5l.368.1745.13:nosplits 47.4 29 10847 40
5l.368.1745.13:splits 29.8 38 27545 40
+timefilter=0.25 27.8 54 35230 40
+states=30 21.8 49 15675 40
+reducefilt+rmsplits 19.3 32 15270 40
+gsf=6 14.9 35 13090 40

Table 2: Results with a fixed number of 5 training iterations
showing the DER, number of speakers (#spkrs), number of
segments (#segs) and the number of iterations across all files
(#iters).

System DER #spkrs #segs #iters
5l.368.1745.13:nosplits 49.9 29 10847 48
5l.368.1745.13:splits 29.8 38 27510 40
+timefilter=0.25 27.7 54 34765 46
+states=30 21.1 49 15302 56
+reducefilt+rmsplits 18.3 31 14943 53
+gsf=6 14.8 35 13024 50

Table 3: Results using the automatic stopping criterion show-
ing the DER, number of speakers (#spkrs), number of segments
(#segs) and the number of iterations across all files (#iters).

The number of split speech segments has reduced.
Overall, the DER has successfully decreased at each stage

and the last three experiments have achieved results lower than
the baselines. After filtering the training segments by time, each
further experiment reduces the number of segments until the fi-
nal experiment which over segments by 10%, a drop from 69%.
Lastly, if the final experiment is continued for 50 iterations, the
DER reaches 13.0%, stopping at 5 iterations is a loss of 1.9%.

5.3. Stopping criterion
Table 3 shows the results for the same experiments in Table
2, however the automatic stopping criterion is put in place. A
threshold of 1% is applied, meaning if the percentage of change
between two iterations is less than this threshold, the current
iteration is chosen as the final iteration. This allows a similar
number of iterations to occur. Similar progress through exper-
iments is seen here, however in most stages the DER is lower
than (or equal to) the equivalent experiment with a fixed number
of iterations. The penultimate experiment gives the largest gain,
from 19.3% to 18.3%, a 1% gain. This shows implementing a
stopping criterion produces better or same results than a fixed
number of iterations. Unfortunately this is not true for the first
experiment as the DER increases, however the DER is already
large and problematic at nearly 50%.

As previously mentioned, the final experiment was contin-
ued for 50 iterations. For each audio file, the iteration with the
lowest DER was manually selected and these were scored. The
overall DER reaches 12.9%, this score is the goal of the au-
tomatic stopping criterion with a large number of iterations to
choose from. Error of 1.9% is gained in the suggested stopping
criterion which is produced with a lower number of iterations.
In terms of computation, 1.9% DER is gained from having the
ability to use a large number of iterations and less computation
increases the DER.

With the stopping criterion in place, Recording7 stops at it-
eration 8 and Recording8 stops at iteration 9 in Figure 2, when
the percentage of change in scores is less than the 1% thresh-
old. The DER is not stable, but the change is small after the
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Figure 2: Results for two audio files: the DER, number of
speakers (#spkrs), number of reference speakers (#refspkrs) and
average probabilities (score) for each iteration.

fifth iteration and Recording8 shows this may not always be a
reduction in DER over time. However, the stopping criterion
helps to reduce the DER or keep it the same as a fixed number
of iterations.

6. Conclusions
A novel semi-supervised speaker clustering technique for
speaker diarisation is proposed which uses DNNs. It requires
a pretrained speaker separation DNN which is used as a starting
point for building new DNNs for each audio file. The newly
built DNNs are then iteratively adapted using speech segments.
An average probability per frame stopping criterion, involving
change across iterations, allows for the training iterations to au-
tomatically stop. It is shown to reduce or keep the same DER
score in a similar number of iterations. Experiments involved
filtering the adaptation segments and improving the decoding
stage, both in order to produce purer segments to readapt the
DNN to. The experiments show a fixed number of training iter-
ations reaches 14.8% as well as experiments invoking stopping
criterion. This is lower than the baseline of 19.9%. A large
number of iterations, 50, can reduce the DER by 1.9% in the
final experiment, if computation is not an issue.
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