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Abstract

Low-dimensional ‘bottleneck’ features extracted from neural
networks have been shown to give phoneme recognition accu-
racy similar to that obtained with higher-dimensional MFCCs,
using GMM-HMM models. Such features have also been
shown to preserve well the assumptions of speech trajectory dy-
namics made by dynamic models of speech such as Continuous-
State HMMs. However, little is understood about how networks
derive these features and how and whether they can be inter-
preted in terms of human speech perception and production.

We analyse three-dimensional bottleneck features. We
show that for vowels, their spatial representation is very close
to the familiar F1:F2 vowel quadrilateral. For other classes of
phonemes the features can similarly be related to phonetic and
acoustic spatial representations presented in the literature. This
suggests that these networks derive representations specific to
particular phonetic categories, with properties similar to those
used by human perception. The representation of the full set of
phonemes in the bottleneck space is consistent with a hypothe-
sized comprehensive model of speech perception and also with
models of speech perception such as prototype theory.
Index Terms: Neural Networks, Human Speech Perception,
Recognition, Segmental Models, Bottleneck Features

1. Introduction
Significant progress has been made in automatic speech recog-
nition using large statistical models [1, 2], but at the expense of
interpretable models. It is very difficult to relate a model with
many thousands of parameters to the relatively small number
of moving parts of the human vocal tract involved in produc-
ing speech. Current mainstream models for speech recognition
also largely ignore the dynamics of speech and the human ar-
ticulators, i.e. relatively slowly changing acoustics and features
strongly correlated in time [3].

Various authors have postulated that speech lies on low-
dimensional manifolds embedded in high-dimensional space
[4, 5]. Vowels are well distinguished phonetically by com-
paring tongue ‘backwardness’ with height, represented by the
ideal ‘vowel quadrilateral’ phonetic space [6]. A similar spatial
representation is obtained when vowel sounds are analysed ei-
ther acoustically (the F1:F2 ‘vowel space diagram’) or in terms
of human perception [7, 8]. Two-dimensional representations
cannot capture the full range of vowel quality, but Pols et al.
showed that 81.6% of the variance in the acoustics could be ex-
plained by just 3 dimensions, rising to 94.0% with 5. Other
speech sounds have been less investigated in this manner, but
for fricatives [9, 10] just 2 dimensions have been found to ac-
count for over 95% of the variance. The interpretation of the
dimensions was less clear, but again very similar spaces were

found by phonetic, acoustic and perceptual analyses.
Segmental [11, 12, 3] and Continuous-State HMM [13]

models of speech aim to be faithful to the true nature and dy-
namics of speech. Recognition accuracies have been hampered
by poor ability to model all the variation found for example
in formants, due to speaker differences, co-articulation, and so
on. Further, the analyses reported above suggest that different
classes of phonemes lie on distinct low-dimensional spaces, and
thus might be best modelled by different types of features (e.g.
formants for vowels [14], spectral energies for consonants [15]).

Switching feature representations during decode is not triv-
ial, and also some potentially useful features such as for-
mants are difficult to estimate [16]. In previous work [17, 20]
we explored using neural networks to automatically derive
low-dimensional ‘bottleneck’ feature (BNF) representations of
speech. With 9-dimensional (9d) features we obtained 29.4%
phoneme recognition error on TIMIT [18], using a standard
monophone GMM-HMM recogniser [19], significantly less
than the 49.9% using formants plus time derivatives (also 9d).

However, from aiming at models and features which can
be related to knowledge of human production and perception
of speech, we ended up with features which do not seem to be
so interpretable. What do BNFs represent? Can they be re-
lated to human perception or production of speech? Also, how
does the network learn them, and if speech is inherently low-
dimensional, why is a network with many parameters needed
to generate a low-dimensional representation adequate for au-
tomatic recognition? If we can relate the ‘blind learning’ from
data by the network to human speech recognition, we would
gain confidence that the network has optimised for speech rather
than some spurious data characteristics.

In the following we begin to answer some of these ques-
tions, using a spatial analysis of three-dimensional BNFs. For
vowels, we show surprisingly close correspondence with fa-
miliar vowel-space diagrams, and also find similar correspon-
dences for other classes of phonemes. We conclude by consid-
ering these findings in the light of hypothesized comprehensive
models of speech perception [9, 21], also considering models of
speech perception such as Prototype theory [22].

2. Background
We first describe bottleneck features, TIMIT recognition re-
sults, and measures for comparing feature spaces.

2.1. Bottleneck Features (BNFs)

Bottleneck features are obtained from the activations of neurons
in a narrow (3 to 9 neuron) layer in 5-layer neural networks,
trained using Theano [23]. The majority of these networks were
multi-layer perceptrons (MLPs) with the bottleneck in the cen-
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Network Autoencoder MLP DBN
Dim./Layer 3d/3 9d/3 3d/3 9d/3 3d/4 9d/4

all phonemes 64.8 60.8 47.8 37.9 43.8 35.2
voiced only 72.7 65.6 50.5 43.8 47.7 40.3
unvoiced 40.5 37.7 30.2 20.6 26.6 19.9

Table 1: CS-HMMphone recognition % Error using BNFs from
5 layer Autoencoder and classifier networks.

tral (third) layer, trained discriminatively on the TIMIT training
set to predict posterior probabilities for 49 phonemes [24]. In-
puts were 11-window log Mel-frequency filterbanks. Full de-
tails may be found in Bai et al. [20]. We also trained two
other types of networks: firstly, Autoencoder networks with the
same structure, where the task of the network was to recon-
struct the input features; secondly, 5-layer classifier networks
with the bottleneck in the final (fourth) layer before the Soft-
max output. Although the latter were pre-trained as deep belief
networks, then fine-tuned discriminatively, recognition experi-
ments showed that the effect of the changed training method-
ology was negligible compared with the effect of moving the
bottleneck layer deeper in the network.

2.2. CS-HMM Phoneme Recognition using BNFs

The CS-HMM is a ‘parsimonious’ model of speech which aims
to reflect speech structure and dynamics more faithfully than
conventional large statistical models. The results in Table 1
were obtained with just 535 parameters in the recogniser for
the experiments using 9-dimensional (9d) features and the full
phoneme set. The model assumes features which embody the
smooth, constrained movement of the human articulators, such
as formants [25, 26] or low-dimensional BNFs [17]. The tra-
jectories of these features during speech are recovered using a
continuous state which describes a distribution over the current
feature values, given the observations seen and estimated tra-
jectory and phonetic history. The space of possible trajectories
is explored through branching and pruning a set of hypotheses.
Full details may be found elsewhere [13, 14, 26].

Table 1 shows phoneme recognition error rates using the
CS-HMM with 9d and 3d BNFs from various networks. These
error rates are significantly lower [17] than obtained with for-
mants estimated using WaveSurfer [27] (73.7% for the full
phoneme set). This suggests that the network training removed
much of the variability from the features not needed to predict
phonemes. Features from multiple random initialisations of the
networks are different, but give very similar results.

Notably, BNFs derived from the Autoencoder (AE-BNFs)
give considerably higher recognition error than those from the
classifiers. Intuitively, AE-BNFs retain more unwanted vari-
ation for the CS-HMM to deal with (using few parameters),
since the Autoencoder must compress as much as possible of
the information in the input features into the BNFs in order to
reconstruct its input. The classifier is free to remove any varia-
tion unnecessary for predicting phonemes. The features derived
from the bottleneck in layer 4 give slightly better accuracy than
those from layer 3. This is again as expected, since deeper lay-
ers progressively remove more unwanted variation [28].

2.3. Metrics to Compare Phonetic Spaces

We represent features spatially using two-dimensional plots
showing the centroids of clusters of phoneme realisations for
a given set of n phonemes Φ = φ1 . . . φn (e.g. vowels, Fig.

1). Let X, Y be n× 2 matrices giving the coordinates of points
xi = (xi1, xi2), yi = (yi1, yi2) in two such plots (1 ≤ i ≤ n).
X and Y are assumed ordered according to Φ.

We want to compare the BNF space with, for example, for-
mant space. Since the only constraint on training BNFs is for
them to lie in [0, 1], we consider the shape Dx described by
connecting points xi to be significant, but not its location or
rotation in BNF space. We define two distance measures:

1. d2(X, Y ) is the Euclidean distance between points yi and
the ŷi found by attempting to affine transform X to Y ,

Ŷ = AX, where A = Y X−1, and

d2(X, Y ) = 1
n

Pn

i=1

qP2
j=1(yij − ŷij)2. (1)

2. ds(X, Y ) allows greater shape deformation by comparing
matching edges and angles of Dx and Dy (cf [21]). Let vec-
tor e

(x)
i+ be the edge from xi to xi+1, e

(x)
i− from xi to xi−1,

and θ
(x)
i the angle between e

(x)
i+ and e

(x)
i− (let n + 1 � 1).

ds(X, Y ) = 1
2

`
de(X, Y ) + da(X, Y )

´
, where (2)

de(X, Y ) = 1

n
√

2
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l
(x)
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(l(x)
i+ is the length of vector e

(x)
i+ , and the normalising constants

ensure that ds(X, Y ) ∈ [0, 1]).

3. Representations in BNF Space
In this section we investigate and relate the representations in
BNF space learned for vowels and for fricatives.

3.1. BNF Representation of Vowels

Fig. 1(a) shows F1 plotted against F2 for formants estimated
using WaveSurfer [27], for TIMIT. For each instance of each
vowel, the average feature was calculated between the phoneme
boundaries given by the TIMIT transcriptions. The figure shows
the centroids and ellipses indicating 0.5 standard deviation of
the instances for each phoneme. The structure of the space is as
expected from the literature (e.g. [30]), but there is considerable
overlap between phonemes.

In a corollary with the first three formants F1, F2, F3, we
plot two-dimensional spatial representations of instantiations of
vowels for the three pairs of 3d BNFs (1, 2), (1, 3), (2, 3) from
several initialisations of the networks reported in Table 1. For
each initialisation, one of the pairs corresponds strikingly well
with the vowel space diagram. An example is shown in Fig.
1(b). This shows that the network has learned by itself to iden-
tify a set of parameters that have similar properties to formant
frequencies, and hence can be related to tongue position, and
that these features may be optimal for discriminating between
vowels. It is remarkable that these features should be so close
to those known for the human auditory space.

Comparing Figs. 1(a) and 1(b), we see that this BNF space
is inverted and rotated in comparison with the vowel space di-
agram. This is not significant, because network training places
no constraints on the learned feature space. But the structure, or
‘shape’ defined by the centroids, is significant, as it is indicative
of the structure of the underlying acoustic space.
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(a) Formants (WaveSurfer [27]). (b) BNF MLP 3d/3 Vowels. (c) BNF MLP 3d/3 Fricatives. (d) Fricatives from [10].

Figure 1: (a,b) TIMIT vowels showing correspondence between (a) formants, (b) one BNF pair from MLP 3d/3 (Table 1). (c) BNF
fricatives, corresponding to (d) [10]. Each cluster is shown by its centroid and an ellipse showing 0.5 standard deviation.

Best Matching Avg. Worst
Feature Pair Formant d2 ds d2 ds

MLP 3d/3 a (1, 3) F1:F2 0.142 0.147 0.278 0.201
MLP 3d/3 b (1, 2) F1:F3 0.195 0.139 0.336 0.224
MLP 3d/3 c (1, 2) F1:F2 0.216 0.139 0.330 0.206
MLP 3d/3 d (1, 2) F1:F2 0.119 0.153 0.339 0.231
DBN 3d/4 (2, 3) F1:F2 0.176 0.155 0.363 0.226
A/E 3d/3 (2, 3) F1:F2 0.192 0.187 0.388 0.250
MFCC In-conclusive (mean d2 = 0.348, ds = 0.217)

Table 2: Distances between BNF and formant spaces.

The BNF clusters have lower variance and less overlap than
their formant space counterparts, and make fuller use of the
available space compared with the theoretical frequency space
for formants, which is limited by the human vocal tract1. While
preserving the vowel space layout, the network has at the same
time removed much of the variation unimportant for its task of
predicting phoneme outputs from input features.

In Table 2 we report distances (Section 2.3) between the
formant space and the matching BNF pairs, together with av-
erage distance between the formant space and non-matching
BNFs. For comparison, the average distance between two sets
of ‘vowel space’ BNFs is d2=0.065, ds=0.041 (non-matching:
d2=0.243, ds=0.192), and average distance from the BNFs to a
set of random points in [0, 1]2 is d2 = 0.431, ds = 0.282. The
metrics (and visualisation) highlight a single anomaly, for net-
work ‘c’, for which phoneme /er/ was apparently out of place.
In this case it was found that the network had learned an alterna-
tive representation, matching F1:F3 more closely, which gives
a plot similar to F1:F2 with /er/ moved (for American English).

Features from other networks are rotated differently, and
may not be inverted, but show the same structure. In Fig. 2(a)
we show the results of using affine transformations to align the
matching BNF pair and formant spaces (in calculating d2 (Eq.
1)) with manually-selected centroids of vowel F1:F2 clusters
reported by Hawkins [30]. Evidently the various representa-
tions preserve the vowel space structure, but are not identical.
The networks may have learned only local optima, albeit good
ones (by the recognition rate). Alternatively three dimensions
may not be enough and each dimension accounts for more than
a single underlying feature. Plots of the remaining two pairs
of BNFs exhibit some of the ‘vowel space’ structure, but com-
pressed into part of the space. This explains why the values in

1The clusters are not Gaussian as suggested by Fig. 1(b), but rather
the networks seek to make full use of the [0, 1] BNF space (cf Fig. 1(c)).

columns 6 and 7 of Table 2 are not higher. It seems likely that
the third dimension is more relevant to consonants. We examine
this further in the next section.

Visualisations of BNFs fromAutoencoders (AE-BNFs) and
from bottlenecks in layer 4 (DBN 3d/4), confirm that in both
cases the vowel space structure is recovered. The intuitions
mentioned in Section 2.2 to explain the variations in phoneme
recognition error are also confirmed. For the AE-BNFs, the
variance in each cluster is much larger, whereas for BNFs from
the deeper bottleneck layer, variance is slightly lower and the
clusters are also slightly better separated. The distances in Ta-
ble 2 do not show these differences. This is likely because they
take no account of cluster variance, and suggests that alternative
measures could be found to relate ‘goodness’ of clustering with
recognition performance.

When all pairs of 9d BNFs are plotted in the same way,
some are again similar to F1:F2, but it is not clear which pair
matches best, either visually or from the distances. This may
indicate that some dimensions are superfluous, so information
is duplicated between features, or that 9 dimensions allows the
network to create a finer analysis than possible in 3d. Further
work is needed to understand and interpret the optimal number
of dimensions to represent vowels, and to find more discriminat-
ing distance measures. Finally, similar plots for the first three of
13 MFCCs do not match the F1:F2 structure in the same way,
confirmed by no match being identified using distances.

3.2. BNF Representation of Fricatives

Perceptual, acoustic and articulatory spaces have been less in-
vestigated for consonants, but the ideas for vowels have been
successfully extended to fricatives [10], showing strong corre-
spondence between, acoustic, phonetic and production spaces
for fricatives /s/, /sh/, /f/, /th/ and /hh/ (Fig. 1(d)). The BNF
space for fricatives is similar (Fig. 1(c)). As for vowels, the net-
work has found a representation which is interpretable in terms
of human perception and production.

The BNF space is more distorted compared with the litera-
ture reference, than we saw for vowels, and comparison of the
spaces using distance measures and transformations is not so
convincing. This may again suggest that three dimensions is in-
adequate, a view reinforced by reading the literature on human
perception of consonants and our previous work [15]. Or it may
simply be due to differences in speaker cohorts between TIMIT
and the study from which Fig. 1(d) was taken [10].

The study proposes (but does not quantify) that the axes be
interpreted as sibilance and place of articulation. Previous stud-
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(a) Aligned BNFs and formants. (b) BNF (1, 2) MLP 3d/3. (c) BNF (1, 3) MLP 3d/3.

Figure 2: (a) Centroids (identified by hand) of formant vowel clusters identified by Hawkins [30] (British English), formants (from
WaveSurfer) and BNFs from three network initialisations, optimally aligned, (b,c) centroids for two pairs of BNFs, for all phonemes in
the BNF (MLP 3d/3) space; phonetic categories are colour-coded, voiced phonemes indicated by solid circles, unvoiced by open.

ies [31] have shown that humans distinguish fricatives by broad-
band energy in specific frequencies. We could therefore hypoth-
esise a link between characteristic broadband noise frequencies
for fricatives, and formant frequencies for vowels, to explain
their co-existence within the same set of low-dimensional bot-
tleneck features. We discuss this further in the next section.

3.3. A Unified Bottleneck Feature Space

The BNFs must represent all speech sounds in a single space,
including vowels, naturally represented by features with contin-
uous trajectory dynamics [25]; and unvoiced consonants, char-
acterised by broadband noise in specific frequency bands and
piecewise constant [33, 31] dynamics. Voiced consonants com-
bine features of both, so we may anticipate being able to make
some interpretations of the space and to find some overlap in
representations, but given the different temporal dynamics and
longer-term temporal effects [34, 35] it is not obvious how a sin-
gle space could describe all sounds. However, for fricatives it
was found that “auditory processing in the fricative data was ad-
equately modelled by the auditory transformations used in the
vowel data” [10], and other studies have mapped vowels and
consonants to a single 3d space [21].

Figs. 2(b) and 2(c) show plots of BNF MLP 3d/3 pairs
(1, 2) and (1, 3) for one network, for all TIMIT phonemes. Pho-
netic classes are colour-coded, voiced phonemes shown by solid
circles, unvoiced by open. Fig. 2(b) corresponds to 1(b) so the
same vowel space structure can be seen. Other structure can be
seen: Firstly, the lower right corner is free of vowels, but occu-
pied by nasals. This is is understandable; one characteristic of
nasals is lowered formants [36]. Secondly, clustering accord-
ing to manner of articulation, such as liquids (/w/ close to the
diphthong /ow/, /y/ to /iy/), and various groups of fricatives.

Considering how these phonemes are articulated suggests
that the BNF dimensions in Fig. 2(b) may relate more generally
to tongue position. This explains co-located phonemes in the
figure. Within phoneme groups such as {/s/, /iy/, /z/}, {/zh/,
/sh/}, {/w/, /l/, /ao/}, the vocal tract is to some extent in a similar
configuration. Therefore the location in some dimensions of
acoustic space, and thus bottleneck space, may be similar. In
Fig. 2(b), vowels and voiced consonants appear in the left half,
unvoiced in the right, suggesting that the third feature correlates
strongly with voicing. /s/ and /y/ are now far apart, /s/ and /z/

less so, reflecting differences in strength of voicing. Finally,
plots (not shown) of the third pair (2, 3) show /s/ and /sh/ very
close, reflecting their similar frication characteristics.

4. Discussion
So the way the 3d BNF spaces map all phonemes is somewhat
interpretable, but how does this relate to other acoustic and pho-
netic characteristics identified as critical for human perception?
For example, static features such as voicing, aspiration and to-
tal energy; and dynamics such as phoneme duration, formant
transitions [37], and correlations between phonemes [35, 38]?

One argument is that this evidence supports the Prototype
theory of speech perception [22, 9], which says that speech seg-
ments are identified according to their perceived distance from
‘prototypes’ in perceptual space. Human generation of speech
sounds is correspondingly according to articulatory targets (cf
[25]). This seems to contrast with perception according to com-
plex perceptual cues. However three dimensions is very restric-
tive, and our networks were simple and had little exposure to
speech dynamics, seeing only a window of 11 frames. We can-
not on this basis make any judgements about perceptual theory.

It would therefore be interesting to extend this work to anal-
yse low-dimension features produced by recurrent architectures
such as RNNs, which are able to learn dynamics over time, to
perhaps gain insights into why these networks perform better
for speech recognition. Such analysis is also of interest to try
to encourage bottleneck features closer to the assumptions of
speech dynamics made by segmental and CS-HMM models.

5. Conclusion
We showed that automatically-derived BNF features correspond
surprisingly well with representations derived in phonetic, artic-
ulatory and acoustic analyses of human speech perception and
production. This confirms that the networks generating the fea-
tures are in some sense learning to recognise speech, rather than
spurious characteristics of the data. Further work is necessary
to gain a deeper understanding of the unified space described by
the BNFs, and to understand and control how they may encode
the dynamics of speech in a way that could make them more
useful in automatic speech recognition.
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