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Abstract
Ever since the deep neural network (DNN) appeared in the
speech signal processing society, the recognition performance
of automatic speech recognition (ASR) has been greatly im-
proved. Due to this achievement, the demands on various appli-
cations in distant-talking environment also have been increased.
However, ASR performance in such environments is still far
from that in close-talking environments due to various prob-
lems. In this paper, we propose a novel multichannel-based fea-
ture mapping technique combining conventional beamformer,
DNN and its joint training scheme. Through the experiments
using multichannel wall street journal audio visual (MC-WSJ-
AV) corpus, it has been shown that the proposed technique
models the complicated relationship between the array inputs
and clean speech features effectively via employing intermedi-
ate target. The proposed method outperformed the conventional
DNN system.
Index Terms: deep neural networks (DNNs), multichannel
speech recognition, distant speech recognition, feature compen-
sation.

1. Introduction
In recent years, deep learning has been widely investigated
in signal processing and become an opportunity for automatic
speech recognition (ASR) to advance. In acoustic modeling, in-
troduction of the deep neural network (DNN)-hidden Markov
model (HMM) system which represents the relationship be-
tween the acoustic features and HMM states using a DNN in-
stead of a Gaussian mixture model (GMM) is considered as
a breakthrough. The DNN-HMM system has outperformed
the conventional GMM-HMM system in various ASR tasks
[1, 2, 3]. The remarkable performance of the DNN-HMM sys-
tem is attributed to its capability in automatically learning the
complicated nonlinear mapping between the input and target
vectors.

Due to the progresses above, the ASR system has achieved
great performance in close-talking environments. However, re-
cent developments in speech and audio applications such as
hearing aids and hands-free speech communication systems re-
quire speech acquisition in distant-talking environments. Un-
fortunately, as the distance from the speaker and the microphone
increases, the recorded speech becomes more distorted due to
the background noise and room reverberation. Although it may
be possible to acquire the speech in close-talking environments
by using a headset microphone, it is not a general solution be-
cause of the inefficiency in terms of cost and ease of use. Con-
sequently, ASR performance in distant-talking environments is
still far from that shown in close-talking environments.

In order to overcome this difficulty, various researches have
focused on techniques for efficiently integrating the informa-
tion obtained from multiple distant microphones to improve the
ASR performance. One of the most conventional multichannel-
based techniques is the beamformer method, which enhances
the signals emanating from a particular location by individual
microphone arrays. The simplest technique is the delay-and-
sum (DS) beamformer [4], which compensates the delays of the
microphone inputs so that only the target signal from a partic-
ular direction synchronizes with. In addition, there are many
sophisticated beamforming methods [5, 6] which optimize the
beamformers to produce a spatial pattern with a dominant re-
sponse for the location of interest.

Feature mapping techniques based on DNN have been also
investigated recently. DNN-based feature enhancement tech-
niques [7, 8] have already been widely employed in robust ASR
due to their advantage in directly representing the arbitrary un-
known mapping between the noisy and clean features unlike the
conventional techniques [9, 10, 11, 12] which usually require
specific assumptions or formulations. Especially, [8] showed
that the feature mapping technique combining beamformer and
DNN improves the performance of the ASR system in multi-
channel distant speech recognition.

Meanwhile, recent researches on joint training technique
of DNN [13, 14] have drawn attention. The joint training tech-
nique builds a DNN by concatenating two independently trained
DNNs and jointly adjusting the parameters. Through this train-
ing technique, the synergy between two DNNs can be amplified.
Traditionally, this joint training framework has been applied to
incorporate two different tasks into one universal task, i.e., in-
tegrating speech separation and acoustic modeling [14]. In ad-
dition to the usage above, the joint training technique can be
used for training a DNN in charge of a single task elaborately.
In these circumstances, the performance of DNN depends on
deciding which types of features are represented in the interme-
diate layer where junction between two DNNs occur. In [15], a
performance of DNN was enhanced by giving appropriate inter-
mediate concepts which the DNN should represent in the mid-
level.

In this paper, we propose a novel DNN-based feature en-
hancement technique for multichannel distant speech recogni-
tion in modern multichannel environments where various types
of microphone data are given as training data. The main contri-
bution of the proposed approach is to construct a multichannel-
based feature mapping DNN algorithm by properly combining
a conventional beamformer, DNN and its joint training tech-
nique with lapel microphone data which has an intermediate
level of acoustic information between DNN input and the tar-
get. To implement the technique making use of various micro-
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Figure 1: The layout of the UEDIN Instrumented Meeting
Room (measurements in cm). Array microphones are numbered
1-16. Cameras are mounted under Array 1 to give closeup views
of participants in the seated locations. The six reading locations
are indicated as Seat 1-4, Presentation and Whiteboard.

phone types and evaluate the performance, we used a data set
of single speaker scenario from multichannel wall street journal
audio visual (MC-WSJ-AV) corpus [16] which is a re-recorded
version of WSJCAM0 [17] in a meeting room environment.

The remainder of this paper is organized as follows. In
section 2, we describe the MC-WSJ-AV corpus. In section 3,
we present the proposed DNN-based multichannel feature en-
hancement technique. In section 4, we provide results from
the ASR experiments performed to evaluate the proposed meth-
ods on evaluation set of single speaker scenario in MC-WSJ-AV
corpus, and in section 5, we provide a summary and final con-
clusions.

2. Database description on single speaker
stationary scenario of MC-WSJ-AV corpus

MC-WSJ-AV corpus can be categorized into three scenarios:
single speaker stationary, single speaker moving and overlap-
ping speakers scenarios. Since we are dealing with only the
audio data in the single speaker stationary scenario, this section
overviews the recording of the single speaker stationary sce-
nario in MC-WSJ-AV database.

For the recording of the single speaker stationary scenario
data, the data is recorded in three sites: The Centre for Speech
Technology Research, Edinburgh (UEDIN), The IDIAP Re-
search Institute, Switzerland (IDIAP) and TNO Human Factors,
The Netherlands (TNO). Instrumented meeting rooms installed
at the three sites allow the audio to be fully synchronized. The
layout of the UEDIN room with the positions of the microphone
arrays and the six reading positions, is shown in Figure 1. The
room contains two eight-element circular microphone arrays,
one mounted at the center and one at the end of the meeting
room table.

In addition, the speakers are provided with close-talking ra-
dio headset and lapel microphones. The TNO and IDIAP rooms
contain the similar recording equipments, but differ in their
physical layout and acoustic conditions. In the single speaker
stationary condition, the speaker was asked to read sentences
from six positions within the meeting room: four seated around
the table, one standing at the whiteboard and one standing at the
presentation screen. For each speaker, one sixth of the sentences
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Figure 2: The schematic diagram of proposed technique.

are read from each position.

3. Proposed approach
In this work, the (m)-th array microphone feature, the DS-
beamformed feature from the array, lapel microphone fea-
ture and headset microphone feature being extracted at the

t-th frame are denoted as a
(m)
t , bt , lt and ht , respec-

tively. Additionally, we denote a subsequence of vectors
[x′n1−n2

x′n1−n2+1 · · ·x′n1+n2−1 x′n1+n2
] with the prime rep-

resenting matrix or vector transpose from frame index n1 − n2

to n1 + n2 as xn1,n2 .

We propose a novel DNN-based feature enhancement ap-
proach for multichannel distant speech recognition. The pur-
pose of our technique is to estimate the clean features from the
distant array features. However, there exists two problems for
enabling the DNN to achieve this adverse task. The first prob-
lem is the phase differences among each signal of array micro-
phones originated from the distances between the speaker and
each microphone. And the second problem, which is more se-
rious, is the lack of acoustic information of the array. Due to
the distances between each of the array microphones and the
speaker, the microphones have low ratio of direct-to-reverberant
speech energy which becomes a huge limitation on reconstruct-
ing the clean speech entirely. To compensate for these prob-
lems, we propose the DNN as shown in Figure 2.

The proposed DNN is constructed by concatenating two
individually fine-tuned DNNs and training the unified DNN
jointly. We call the first DNN as lower DNN since it is placed in
the lower part of the DNN in Figure 2. The second DNN which
is called the upper DNN, deals with modeling the relationship
between the output vector generated by the lower DNN and the
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headset microphone feature.

3.1. Lower DNN

For training the lower DNN, DS beamforming [4] is employed
to the microphone array to align the phases of microphone in-
puts. Once the beamforming has been applied, the input vector
of the lower DNN vt is formed by concatenating a window of
several adjacent frames of feature from the beamformed source
and additional windows covering each array microphone fea-
tures, i.e.,

vt = [a
(1)
t,τ ,a

(2)
t,τ , · · · ,a(M−1)

t,τ ,a
(M )
t,τ ,bt,τ ] (1)

where τ represents the temporal coverage required for figuring
out the clean feature of t-th frame and M represents the number
of the array elements. This input structure helps the lower DNN
to learn the correlations among features of array microphones.

As the target vector of the network, we used a window of
several frames of feature obtained from lapel microphone which
has a much higher ratio of direct-to-reverberant speech energy
than those of the array microphones but lower than those of the
headset microphones. Therefore, the lower DNN output can be
represented as follows:

ôL
t = [ l̂t,τ ]. (2)

3.2. Upper DNN and joint training

In the training stage of the upper DNN training, the network
learns the mapping between the output vector of the lower DNN
and the corresponding headset microphone feature which can
be interpreted as a ideal clean feature. The mapping can be
represented as follows:

ôU
t = [ĥt ] ∼= f (̂lt,τ ). (3)

Here, function f is a function which deals with the mapping
from the reconstructed lapel microphone features to the head-
set microphone feature. Since the clean features are estimated
from the reconstructed lapel features which have more abun-
dant acoustic information than the array features, we can expect
more accurate reconstruction of clean features.

After training the upper DNN, two different networks are
cascaded to form a single larger DNN and the unified DNN
jointly adjusts the weights using the backpropagation algorithm.
In detail, the error signal between the clean target and the out-
put of unified DNN flows back to the lapel microphone feature
layer and the lower DNN, and consequently training all the pa-
rameters. With this series of processes, learning the relation-
ship between the array features and the headset features can be
enhanced by guiding the DNN through the intermediate level
features. For training all the DNNs in the proposed method, the
stochastic gradient descent algorithm is used to minimize the
mean squared error (MSE) function which is given by

CMSE =
1

T

T∑
t=1

||Ot − Ôt ||2 (4)

where Ot , Ôt , and T denote the target, output vector of net-
work and number of training samples, respectively.

4. Experiments
The proposed technique was trained on development set (DEV)
and its performance was evaluated on evaluation set (EVAL1).

The selection of read sentences for these sets was based on the
development and evaluation sets of the WSJCAM0 British En-
glish corpus [17]. Each speaker prompt contained 17 adapta-
tion sentences, 40 sentences from the 5000-word sub-corpus,
respectively.

In this section, some basic experimental results obtained
from DS-beamformed source (DS) of microphone array, head-
set microphone (Headset), lapel microphone (Lapel) and single
distant microphone (SDM) recordings were presented. Here,
the microphone array refers to Array 1 which is the left one
among the two arrays in Figure 1 and single distant microphone
is the no. 1 microphone of the Array 1. Also, the comparison of
performances with conventional DNN-based feature mapping
methods were included.

4.1. Recognition system and feature extraction

A baseline DNN-HMM system was trained on the WSJCAM0
database. The training set consisted of 53 male and 39 female
speakers. We used the Kaldi speech recognition toolkit [18] for
feature extraction, acoustic modeling of ASR and ASR decod-
ing. For feature extraction, 13-dimensional MFCCs (including
C0) with their first and second derivatives were extracted and
the cepstral mean normalization algorithm was applied for each
speaker. In order to provide the target alignment information for
the DNN-based acoustic model, we built a GMM-HMM system
with 2047 senones and 15026 Gaussian mixtures in total. The
target senone labels of the DNN-HMM system were obtained
over the training data. As for the language model, we applied
the standard 5k WSJ trigram language models.

For the DNN training of the acoustic model, we applied five
hidden layers with 2048 nodes. As for the input of the DNNs,
input features consisted of consecutive 11-frame (5 frames on
each side of the current frame) context window of 13 dimen-
sional MFCC features with their first and second order deriva-
tives, resulting with the input dimension of 429. The input fea-
tures of the DNNs were normalized to have zero mean and unit
variance. The output dimension of the DNN was 2047. Gen-
erative pre-training algorithm for the restricted Boltzmann ma-
chines was carried out to initialize the DNN parameters as de-
scribed in [19]. The errors between the DNN output and the tar-
get senone labels were calculated according to the cross-entropy
criterion [2]. In order to speed up the training, we applied the
learning rate scheduling scheme and the stop criteria presented
in [19].

4.2. Training and structures of DNN-based techniques

The performance of the proposed method was compared with
four different versions of DNN-based feature enhancement ap-
proaches. The compared techniques are

• FE-SDM: mapping single array microphone into a clean
target source,

• FE-DS: mapping DS-beamformed source of the array
into a clean target source,

• FE-Array: mapping multiple sources from microphone
array into a clean target source,

• FE-DS&Array: mapping multiple sources including the
sources from the microphone array and DS-beamformed
source of the array into a clean target source.

For training all the DNN-based feature enhancement tech-
niques, we used cepstral mean normalized MFCC feature of 13
dimension with their first and second derivatives as an input.
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Table 1: WERs (%) on EVAL1 according to various source
types

Channel WER (%)

SDM 58.00

DS 41.97

Lapel 13.18

Headset 7.49

Table 2: Input and output dimensions of the DNN-based tech-
niques.

Method Input dim. Output dim.

FE-SDM 429 13

FE-DS 429 13

FE-Array 3432 13

FE-DS&Array 3861 13

Proposed 3861 13

All the techniques used one or more windows depending on the
number of sources and each window consists of 11 consecutive
MFCCs. Meanwhile, the feature mapping DNNs commonly es-
timated 13-dimensional static MFCC of current frame and the
outputs of DNNs were fed into the recognizer after extraction of
their dynamic component. Table 2 shows the input and output
dimensions of each DNN-based techniques. The networks had
5 hidden layers with 1024 rectified linear units (ReLUs) [20]
are applied except for the proposed technique which contains
the intermediate layer because of its unique structure. The pa-
rameters of the DNN-based techniques are randomly initialized
and fine-tuned using stochastic gradient descent algorithm with
minimum MSE objective function like those of the proposed
method.

Mini-batch size for the stochastic gradient descent algo-
rithm was set to be 256 for all of the DNN-based feature en-
hancement techniques. The momentum was set to be 0.5 at
the first epoch and increased to 0.9 afterward. The learning
rate was initially set to be 0.01 and exponentially decayed over
each epoch with decaying factor of 0.9 except for the cases of
the lower DNN and joint training of the proposed method. For
lower DNN and the joint training, learning rate was initially set
to be 0.001 and exponentially decayed over each epoch with a
decaying factor of 0.95. All the training of DNN-based tech-
niques were stopped after 50 epochs.

4.3. Dropout

As one of the most well-known regularization techniques,
dropout was also applied. Dropout is a method that improves
the generalization ability of the DNN. It can be easily im-
plemented by randomly dropping the input and hidden neu-
ron units. As pointed out by Hinton et al. [21], dropout
can be considered as a bagging technique that averages over
a large amount of models with shared parameters of the DNN.
A dropout percentage of 20% was applied to every DNN-based
feature enhancement technique.

4.4. Performance Evaluation

Table 1 and Table 3 show the results according to various
source types and DNN-based techniques, respectively. Com-

Table 3: WERs (%) on EVAL1 according to variety of DNN-
based feature enhancement techniques.

Method WER (%)

Dropout Percentage 0% 20%

FE-SDM 27.36 25.88

FE-DS 24.25 21.91

FE-Array 21.54 20.44

FE-DS&Array 19.77 19.63

Proposed 18.84 17.70

parison among the DNN-based approaches shows that high va-
riety of input structure of the DNN guarantees better perfor-
mance. We can see that the proposed method outperformed
other DNN-based techniques including FE-DS&Array which
has the same input structure but more parameters than the pro-
posed approach.

Especially, the performance gap between the proposed
method and FE-DS&Array became larger especially when
dropout was applied. With dropout training, the average rela-
tive error rate reductions (RERRs) of the proposed method over
FE-DS&Array was 9.8%. This confirms that our proposed ap-
proach which intervenes the DNN through information of re-
constructed lapel microphone data can be effective in making
the network to learn the complicated relationship between fea-
tures from the distant microphone array, DS-beamformer and
headset microphone sources.

5. Conclusion
In this paper, we have proposed a novel DNN-based feature en-
hancement approach for multichannel distant speech recogni-
tion. The proposed approach constructs a multichannel-based
feature mapping DNN using conventional beamformer, DNN
and its joint training technique with lapel microphone data.
Through a series of experiments on MC-WSJ-AV corpus, we
have found that the proposed technique clarifies the relationship
between the features obtained from distant microphone array
and clean speech. Future study will deal with techniques con-
sidering other speaking scenarios such as overlapping speakers.
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