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Abstract
Pitch is an important property of birdsong. Accurate and auto-
matic tracking of pitch for large numbers of recordings would
be useful for automatic analysis of birdsong. Currently, pitch
trackers such as YIN can work with carefully tuned parameters
but the characteristics of birdsong mean those optimal parame-
ters can change quickly even within a single song. This paper
presents YIN-bird, a modified version of YIN which exploits
spectrogram properties to automatically set a minimum funda-
mental frequency parameter for YIN. This parameter is continu-
ously updated without user intervention. A ground truth dataset
of synthetic birdsong with known fundamental frequency is
generated for evaluation of YIN-bird. Listener tests from ex-
pert birders described the synthetic samples as “sounding like
original & can hardly tell it is synthetic”. Gross pitch error on
whistles and trills were reduced by up to 4%. An analysis of
nasal sounds shows the challenge in accurate pitch tracking for
this syllable type.
Index Terms: Pitch tracking, fundamental frequency, birdsong,
bird calls

1. Introduction
Song is essential for communication between birds, especially
for mate attraction and territory defence [1]. While the scientific
study of birdsong has made important contributions to the field
of zoology, its intrigue has also sparked interest from engineer-
ing researchers. In the last few years, the speech processing
community has researched many issues in bird vocalisations,
notably species classification in [2, 3, 4], syllable or phrase clas-
sification in [5, 6, 7] and song structure analysis in [8, 9].

Another topic in ornithology is determining how similar
two populations of birds are based on their calls and songs.
In [1], Catchpole and Slater mention vocalisation importance
in mate choice and species recognition. This suggests acoustic
signals may give early clues of species distinction [10]. Harte et
al. in [11] investigated the issue of call similarity and concluded
that classifier performance is related to similarity but not a quan-
tifiable indicator. Prosodic features like pitch have been used to
quantify difference in bird populations. In [12], O’Reilly et al.
used pitch contour micro-structure to measure similarity of bird
calls and songs (inspired by dialect similarity measures used by
Mehrabani et al. in [13, 14]). Pitch analysis is not only per-
formed by engineers, zoologists have used it in their work too.
Tobias et al. in [15] developed a system of standardised crite-
ria for species delimitation in birds. Acoustic evidence of song
structure like maximum frequency, minimum frequency, band-
width and peak frequency were used. Sangster et al. in [16] also
relied on frequency information to reclassify a species of owl.

Pitch or fundamental frequency estimation is a much de-
bated topic in speech processing. In speech, the term funda-
mental frequency (f0) describes the period of voiced speech,
and is analogous to pitch. A sound which may not be periodic

can still arouse a pitch, but over a wide range period and pitch
are considered equal and f0 estimation methods are often re-
ferred to as pitch detection algorithms [17].

YIN [17], as discussed later in Section 2 , has strong poten-
tial for pitch tracking in birdsong. However, it must be carefully
tuned for each species and often even for different segments of a
single song. This paper presents a modification to YIN to allow
more fully automated pitch tracking. This offers advantages in
large batch processing where outputs cannot be checked in de-
tail. The aim is to offer zoologists a tool for pitch tracking that
requires less specialist knowledge and intervention.

This improved system, referred to subsequently as YIN-
bird, is described in Section 4. A novel ground truth of synthe-
sised bird calls was developed to allow a quantitative evaluation
of the system. The performance of YIN compared to YIN-bird
is thus evaluated using the standard error metrics (described in
Subsection 5.3). Using YIN-bird on a set of bird whistles im-
proves gross pitch error from 1.67% to 0.58%. For trills, the
figure reduces from 6.29 to 2.31%. Performance on other vo-
calisation types is discussed in Section 6. Common types of
bird vocalisations are presented in Section 3.

2. Pitch Tracking in Birdsong
Pitch extraction tools which have been proven to work for hu-
man speech and music may not work as well on birds. Bird
vocalisations differ to speech in a number of ways. An impor-
tant difference is the frequency range. Bird vocalisations tend
to have a wider bandwidth and higher mean pitch than human
vocalisations. In [18] Tchnernichovski et al. discussed song
similarity of zebra finches and pitch was an important feature.
In 2011 Tchnernichovski released software called Sound Anal-
ysis Pro (SAP) [19] (also available as matlab toolkit SAT). SAP
calculates a number of features, one being f0 which is calcu-
lated using the YIN algorithm [17]. In [20], Mandelblat-Cerf et
al. also used SAP for evaluating song imitation (also for zebra
finches) where pitch again was a crucial feature. While zebra
finch vocalisations may not be liable to pitch errors, YIN’s per-
formance on other types of bird vocalisations is undocumented.
In [21], Babacan et al. discussed pitch tracking performance on
singing sounds. While singing sounds are not identical to bird
vocalisations they are more comparable than speech and bird-
song. [21] showed that YIN [17] provides the 2nd lowest gross
pitch error after RAPT [22]. As the pitch range of bird song lies
outside RAPT’s standard input range, RAPT could not be used.
Based on these findings in [21], the use of YIN in SAP [18, 20],
some preliminary tests and its reputation in the speech commu-
nity as a good pitch estimator for speech and music, YIN was
chosen as the baseline pitch estimator for extracting pitch of
bird recordings in this paper. YIN is based on the well-known
autocorrelation method with a number of modifications [17].
Autocorrelation is very effective for pitch tracking, but some
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autocorrelation peaks suffer ambiguity, which leads to octave
error or estimates too low in frequency [23]. Some bird vocal-
isations change frequency rapidly and over a wide range (1-5
kHz) many syllables include extended frequency sweeps that
sometimes exceed two octaves [24], which makes bird vocali-
sations prone to these types of errors.

3. Bird vocalisations
Birds produce a wide variety of vocalisations. These range from
short, monosyllabic calls, to long complex song [1]. A note
or element refers to the smallest level of song (which can be
analogous to phonetic units). Notes can be grouped together
to form syllables, which are units of sound separated by silent
intervals [25]. Syllables tend to fall into one of the following
categories:
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Figure 1: Spectrogram of different syllable types based on dia-
gram from [1]. (a) Whistle, (b) Downslurred whistle, (c) Trill,
(d) Buzzy sound, (e) Noisy sound, (f) Noisy buzz, (g) Nasal
sound.

Whistles: In [1] Catchpole and Slater describe whistles as the
most basic and common type of vocalisation. A short whistle of
constant pitch appears as a pure, unmodulated frequency trace
(see (a) on the spectrogram in Figure 1). A sound which drops
from a high to low frequency appears as a downward slope
(see (b) in Figure 1). Whistles can be monotone, upslurred,
downslurred, overslurred (where pitch rises then falls) or un-
derslurred (where the opposite is true). Whistles can occur in
constant series, accelerating series or decelerating series [26].

Hoots: Hoots are just low-pitched whistles, typically less than
1 kHz [26].

Trills: Syllables that contain a series of elements which rise and
fall in frequency at a rate greater than 10 Hz will be perceived
as a trill. Sounds with more rapid modulations are referred to
as ‘buzzy’ sounds. Buzzy sounds are less musical. An example
of trilled vibrato and buzzy vibrato can be seen in Figure 1(c) &
(d) respectively.

Noise: Not all bird sounds are tonal or periodic. Noisy sounds
are constructed from short bursts of white noise and sound like
a click. A noisy example is shown in Figure 1(e) and a noisy
buzz sound is shown at (f). Noisy bird sounds are likely to be
harsh on the ear [26]. As noisy sounds are unvoiced they are
excluded from experiments here.

Nasality (Harmonics): Many bird sounds are actually com-
binations of multiple simultaneous whistles (partials) of differ-
ent pitches that the human brain typically perceives as a single
sound (because of the mathematical relationship between the
frequencies of the different whistles). An example of a har-
monic nasal sound is shown in Figure 1(g).

Two-voiced sounds: Some birds have the ability to produce
sounds with two f0 values at once [1]. Birds produce sound
using their equivalent of the human voice box called the sy-
rinx. Whereas the human larynx is situated at the top of the
trachea, the syrinx is much lower down, at the junction of the
two bronchi. This means that the syrinx has two potential sound
sources (voices), one in each bronchus. The sounds are mixed
when fed into the common trachea and buccal cavity [1]. Com-
plex two-voiced sounds contrast to many common birdsong that
have one main frequency band [27]. While there is literature
on the two-voiced phenomenon [28, 29, 30], its regularity is
undocumented. Informally, Zoologists suggest most birds use
only one side of their syrinx, some switch between sides dur-
ing song and few birds use both sides simultaneously. Tracking
pitch of double voiced sounds is complex and is not considered
here.

4. Adaptive parameter - YIN-bird
YIN processes audio data and outputs a pitch estimate. Param-
eters can be specified for each file, with a more accurate pitch
estimate when parameters are carefully selected to match the
input characteristics. One of the more sensitive input parame-
ters is minimum frequency threshold (f0min ). As bird vocal-
isations have a wider bandwidth than human speech, a single
f0min for all segments of the input file may not be suitable.
The proposed system YIN-bird, determines a suitable f0min

for each segment of a bird recording, through careful analysis
of the input spectrogram. Using spectrogram information each
segment will be assigned a f0min parameter which leads to a
more accurate pitch estimate for each input file. A block dia-
gram of the system is shown in Figure 2.
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Figure 2: Block diagram of adaptive f0min YIN (YIN-bird).

Step 1: involves calculating the spectrogram parameters
[Tsp, Fsp, Psp], of audio recording x(1 : N), where x is
the input signal, N is the number of samples of the input sig-
nal, Tsp is the spectrogram frame time information, Fsp is
the spectrogram frequency bins and Psp is a matrix contain-
ing the power of each frequency bin at each time frame. Fig-
ure 3(a) shows a spectrogram of bird syllables. Using the power
(dB) and frequency (Hz) information, a prominent frequency
(i.e. frequency bin with most power) for each frame is se-
lected Fprom(k) where k = 1, ...,K and K is the number
of frames in the spectrogram. Figure 3(b) has the prominent
frequencies Fprom(k) plotted in blue. Information at frequen-
cies of 200 Hz and below is assumed to be noise and is ignored.
If the power of frame k’s prominent frequency (PFprom(k)) is
less than mean(PFprom(1 : K)), frame k’s prominent fre-
quency is ignored (in practice, assigned ‘not a number’ (NaN)
in matlab) as it is most likely an unvoiced frame or a frame
without vocalisation.
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Step 2: segments the audio file into chunks specified by the
user. The segment size is selected based on the bird cor-
pus being used (small segment size gives slower execution).
In this paper each segment contains 3000 samples of input x
(68 ms when fs is 44.1 kHz). Each segment is described as
dx(m) where m = 1, ...,M and M is the input number of
samples (N ) divided by 3000. Segments are shown divided
by black lines in Figure 3(b). Groups of prominent frequen-
cies (Fprom(1 : K)) are assigned to an appropriate dx(m).
If K is 300 frames and M is 30 segments, then prominent
frequency values Fprom(1 : 10) will be grouped in dx(1).
The minimum Fprom in each dx(m) is Fprommin(m).
Fprommin(m) for each frame is plotted in red in Figure 3(b).

Step 3: involves processing the whole audio file (x) with YIN
multiple times. This is purely to make timing information of
YIN-bird’s output consistent with YIN. Each YIN estimation
uses f0min taken from Fprommin(m). Fprommin values
are rounded to the nearest 100 Hz to reduce the number of times
x is passed through YIN. If any two values in Fprommin are
equal this reduces the number of times YIN is called from M
to M − 1. In Figure 4(b) the first two segments have the same
value for f0min (Fprommin(1) = Fprommin(2)). Once all
the pitch estimates have been collected, each segment dx(m)
is assigned its pitch estimate from YIN’s output when f0min

equals Fprommin(m). Finally an output pitch vector from
YIN-bird is concatenated, Yf0Y INbird(1 : W ) (where W is
number of pitch values, reliant on YIN’s hop size parameter).

5. Experimental setup
These experiments have two main goals, to evaluate the accu-
racy of pitch tracking on different types of bird vocalisations
and to evaluate the benefits of using an adaptive f0min param-
eter (YIN-bird).

5.1. Data

Examples of birds that produce sounds discussed in Section
3 are given at earbirding.com [26]. Recordings of these birds
were downloaded from xeno-canto.org, a popular website ded-
icated to sharing bird sounds from around the world [31].
Recordings were preprocessed manually using Adobe Audition
to remove silence and unwanted birds. The data was grouped
into ‘Whistles & hoots’, ‘Trills’ and ‘Nasals’. The data is sum-
marised in Table 1.

Table 1: Bird vocalisation data.

Category No. of examples Length (min:sec)
Whistles & hoots 107 40 : 09

Trills 65 13 : 02
Nasals 63 12 : 32

5.2. Synthesised bird sounds

Evaluation of pitch trackers for speech generally involves a
ground truth of examples where actual pitch values are known.
No such database exists for birds. The data in Table 1 inspired
the creation of a synthesised bird sounds data set complete with
ground truth pitch (download from [32]). The synthesis sys-
tem used here was taken from ‘SMS Tools’ a python imple-
mentation for analysis, transformation and synthesis of musical
sounds based on various spectral modelling approaches by Serra
[33]. The raw wave files (fs = 44.1 kHz) were passed through
Serra’s sinusoid plus residual (SpR) system. The periodic parts

were identified by peak detection and modelled by sine waves
and the non-periodic residual was then added to the sine model
to give a more realistic synthesised bird sound. The ground truth
pitch (g[n]) was identified as the lowest frequency peak of the
sine model over time. For unvoiced regions, g[n] was assigned
a value of ‘NaN’.

Listener tests were performed to evaluate how well the syn-
thetic sounds match the original recordings. On a worst to best
scale of {-3, ..., 3}, the average score of 23 listeners was 2.17
which describes the synthetic sound as “Sounding like original
& can hardly tell it is synthetic” (10/23 were expert bird listen-
ers, the expert’s average was 2.13). The scale was influenced by
work in [34], where listeners were asked to evaluate the speaker
recognizability of synthetic speech using a similar scale.
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(a) Spectrogram of bird whistles input to YIN-bird.
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Figure 3: Elements of processing in YIN-bird

5.3. Error metrics

Performance of the two pitch tracking systems was assessed us-
ing four standard error metrics [35, 21].

• Gross Pitch Error (GPE) is the percentage of frames
for which the absolute pitch error is higher than a certain
threshold. For speech this threshold is usually 20%. As
bird vocalisations tend to have higher pitch the threshold
was reduced to 10%. Only frames considered voiced by
both the pitch tracker and ground truth were included in
this calculation.

• Fine Pitch Error (FPE) is the standard deviation of the
absolute error in Hz. Frames that have gross pitch errors
were excluded. Only frames with ground truth and YIN
estimates being voiced were used to calculate FPE.

• Voicing Decision Error (VDE) is the percentage of
frames for which an incorrect voiced/unvoiced decision
is made.

• F0 Frame Error (FFE) is the percentage of frames
where either a GPE or VDE is observed.
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(c) YIN - nasal sounds
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Figure 4: - 4(a) & 4(b): YIN and YIN-bird pitch estimation on synthetic whistles. - 4(c) & 4(d) YIN and YIN-bird pitch estimation on
synthetic nasal sounds. Pitch is plotted in blue and ground truth in green.

5.4. Experiment parameters

The commonly used YIN system was compared with YIN-bird.
For YIN, parameters wide enough to accommodate all bird vo-
calisations were used. f0min was 500 Hz, window size was
6.7 ms, hop size was 1.7 ms (approximately 75% overlap) and
quality was ‘good’ which means estimates with aperiodic value
of less than 0.2 were considered voiced. For the trills the win-
dow size was reduced to 2 ms as pitch changes more rapidly for
these type of sounds.

YIN-bird used the same window sizes as used with YIN
above. No f0min needed to be specified. The buffer size was
set to 3000 samples, meaning that for every 3000 samples of the
input audio file there would be a new f0min value.

6. Results
Pitch estimates using YIN, with parameters mentioned in Sec-
tion 5.4, were compared to ground truth pitch g[n] in Hz.
Pitch estimates using YIN-bird were also compared to the same
ground truth. The results are shown in Table 2.

When using YIN-bird for whistles, the GPE score shows an
improvement of 1.09%. For trills, the improvement is 3.98%.
Typical YIN and YIN-bird performance on whistle sounds is
shown in Figure 4(a). This shows how YIN performs on syn-
thetic bird syllables created in MATLAB. Note syllables (c),
(d) & (h) experience octave errors or errors too low (g[n] is
plotted in green and the YIN pitch estimate is plotted in blue).
The same errors are observed using SAP [19]. Similar errors are
produced by real data. These errors are corrected in Figure 4(b),
where pitch extraction using YIN-bird is plotted.

Fine pitch error and voice detection error are included to
show that the addition of an adaptive f0min in YIN-bird does
not diminish FPE and VDE. YIN-bird reduces ‘pitch being too
low’ errors exclusively. As FFE combines GPE and VDE, it can
be used as an overall measure of pitch estimation performance
[35, 21]. For whistles and trills the FFE improvement is 2.28%
& 4.34% respectively.

Table 2: Error rates using YIN & YIN-bird.

GPE (%) FPE (Hz) VDE (%) FFE (%)
Whistles:

YIN 1.67 40.97 25.72 26.37
YIN-bird 0.58 39.41 23.68 24.09
Trills:

YIN 6.29 88.89 37.93 41.12
YIN-bird 2.31 63.75 35.61 36.78
Nasals:

YIN 31.00 42.60 33.28 48.94
YIN-bird 6.21 58.67 32.69 35.60

7. Discussion
YIN-bird has reduced GPE and FPE for the ground truth data
set of whistles and trills. The value of YIN-bird lies not only in
this performance improvement, but also in the fully automatic
processing of bird song. Not all bird sounds are a single tone.
Nasal sounds contain many harmonics. Pitch tracking on nasal
sounds with multiple partials is a challenge, especially when
the f0 is missing, as is possible. Although the GPE results can
be presented as an improvement for nasals, Figure 4(c) & 4(d)
show how the pitch estimations jump between bands for both
YIN and YIN-bird for nasal sounds. YIN-bird tends to identify
the pitch as the strongest partial instead of the f0. If f0 is weak
or missing, YIN-bird will set f0min to the prominent partial
thus estimating f0 to be the prominent harmonic rather than the
absent f0. YIN sometimes identifies a weak f0 but other times
estimates a higher partial. The correct ground truth for nasals
is also difficult to establish and manual ground truth corrections
were required for some examples. Where energy in partials is
higher than that at the fundamental, timbre of the sound will
change, how this affects the birds perception is not known. Per-
haps to some birds, quality is more important than pitch? If the
f0 is missing, the interval between harmonics could be used to
calculate f0, but if harmonics are mistuned or missing then this
method will fail also [36]. Nonetheless accurate pitch estima-
tion and harmonic identification of nasal sounds would benefit
birdsong research and needs to be made more consistent in fur-
ther work.

8. Conclusion
Bird sound analysis using signal processing and machine learn-
ing techniques is in its early stages. Pitch is not only important
for analysis and synthesis, but is used in measuring bird popu-
lation similarity. This relies on accurate pitch estimation. Bird
frequency range varies dramatically from species to species, and
even within syllables in a song repertoire from a single bird.
Hence static YIN parameters are not useful in bird recordings.
Automatically determining the f0min parameter on a segment
by segment basis for YIN improves pitch estimation. This im-
provement should in turn improve accuracy on bird species and
phrase comparisons, allowing fully automatic batch processing
of large numbers of recordings from different species.
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