
Modeling Time-Frequency Patterns with LSTM
vs. Convolutional Architectures for LVCSR Tasks

Tara N. Sainath, Bo Li

Google, Inc. New York, NY, U.S.A
{tsainath, boboli}@google.com

Abstract
Various neural network architectures have been proposed in the
literature to model 2D correlations in the input signal, including
convolutional layers, frequency LSTMs and 2D LSTMs such
as time-frequency LSTMs, grid LSTMs and ReNet LSTMs. It
has been argued that frequency LSTMs can model translational
variations similar to CNNs, and 2D LSTMs can model even
more variations [1], but no proper comparison has been done for
speech tasks. While convolutional layers have been a popular
technique in speech tasks, this paper compares convolutional
and LSTM architectures to model time-frequency patterns as
the first layer in an LDNN [2] architecture. This comparison is
particularly interesting when the convolutional layer degrades
performance, such as in noisy conditions or when the learned
filterbank is not constant-Q [3]. We find that grid-LDNNs offer
the best performance of all techniques, and provide between a
1-4% relative improvement over an LDNN and CLDNN on 3
different large vocabulary Voice Search tasks.

1. Introduction
In recent years, both Convolutional Neural Networks (CNNs)
[4] and Long-Short Term Memory Recurrent Neural Networks
(LSTMs) [5] have become popular alternatives to Deep Neu-
ral Networks [6] for large vocabulary continuous speech recog-
nition (LVCSR) tasks. As both CNNs, LSTMs and DNNs
are limited in their individual modeling capabilities, recently a
CLDNN architecture was introduced to combine the modeling
benefits of all three architectures in a unified framework [2].
For example, CLDNNs have shown between a 4-6% relative
improvement over LSTMs on various clean Voice Search tasks.

Convolutional layers in the CLDNN model achieve local
translation invariance through local filters and pooling. This
requires tuning both the filter size and pooling size, which is
typically done experimentally [4]. Since pooling is done on
linear shifts of the convolutional filter, it is most effective when
the filterbank is constant-Q (such as log-mel) and therefore a
linear shift across filters corresponds to a linear shift in pitch.
Pooling is less effective when the filterbank deviates from being
constant-Q, for example with raw-waveform modeling where
the filterbank is learned in the network [3]. In addition, we have
also observed convolution layers to hurt performance in very
noisy conditions.

Frequency [7] and Time-Frequency LSTMs [8, 9] have
been introduced as alternatives to CNNs to model correlations
in frequency. F-LSTMs and TF-LSTMs capture translation in-
variance through local filters and recurrent connections. Since
they do not require any pooling operation, they should be more
adaptable to different types of input features. However, to the
best of our knowledge no fair comparison has been done be-

tween CNNs, F-LSTM and TF-LSTM layers for speech tasks.
The first goal of this paper is to perform a good compari-

son among convolutional, F-LSTM and TF-LSTM architectures
as the first layer in an LDNN network [2]. We compare per-
formance for both mild and moderately noisy 2,000 hr Voice
Search tasks using log-mel features. We find that for mild
speech, F-LDNNs and CLDNNs match in performance, con-
firming the thought that an F-LSTM layer has similar modeling
capabilities to a convolutional layer [1]. Furthermore, by us-
ing TF-LDNNs, which give stronger modeling capabilities, we
can achieve a 1% relative improvement in WER over a strong
CLDNN model. For moderate noise where convolution hurts,
we find that TF-LDNNs provide a 3% relative improvement
over LDNNs.

Second, alternative architectures have also been proposed
to model two dimensional inputs for vision tasks. For exam-
ple, Grid LSTMs [10] have separate LSTMs in both time and
frequency dimensions. When the LSTMs overlap at a spe-
cific time-frequency point, the gate functions and output acti-
vations are computed using both time and frequency LSTM cell
states. Grid LSTMs offer the benefit independently modeling
time and frequency correlations. In addition, ReNets [1] have
completely separate time and frequency LSTMs which do not
include states of both during overlap. The potential benefit of
ReNets is that they are easier to parallelize since the time and
frequency LSTMs move independently. We find on the noisier
test set that a grid-LDNN provides a 1% relative improvement
over a TF-LDNN, while ReNet-LDNN degrades performance.

The third goal of this paper is to compare convolution to 2D
LSTM architectures when the filterbank is learned, specifically
in a multichannel model [11]. We find that when the learned fil-
terbank is not constant-Q, the convoutional layer degrades per-
formance. However, the grid-LDNN provides a 3% relative im-
provement over the LDNN, showing the benefit of modeling
time-frequency patterns with an LSTM rather than a convolu-
tional layer when the filterbank is learned.

2. Architecture Description
This section describes the various architectures explored in this
paper to model time-frequency patterns.

2.1. Baseline LDNN Architecture

The general architecture used for experiments in this paper is
described as follows. First, frame xt is passed as input to the
network. For simplicity, we assume that each frame xt is a log-
mel filterbank feature. Then, this frame can be optionally pro-
cessed in frequency by either CNN or LSTM layers, as denoted
by the “frequency-processing” block in Figure 1. The details of
this frequency processing block will be described in subsequent

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-84813



sections. The output of the frequency processing layer is then
passed to a 256-dimensional linear low-rank layer.

The rest of the architecture is similar to the CLDNN ar-
chitecture described in [2]. Specifically, the low-rank layer is
passed to 3 LSTM layers with 832 cells and a 512 unit pro-
jection layer, then one DNN layer with 1,024 hidden units, and
finally a softmax layer with 13,522 context-dependent state out-
put targets. If no frequency processing is performed, xt is
passed directly to the first LSTM layer, and thus the architec-
ture is known as an LDNN.

During training, the network is unrolled for 20 time steps
for training with truncated backpropagation through time. In
addition, the output state label is delayed by 5 frames, as we
have observed that information about future frames improves
the prediction of the current frame [2].

2.2. Frequency Processing

2.2.1. CNN

The convolutional layer explored in this paper is very similar to
the CNN layer described in [4]. Specifically, we use 1 convolu-
tional layer, with 256 feature maps. The filter size and pooling
size is dependent on the input feature dimension for xt. For ex-
ample, for a 128-dimensional input, we use an 21x1 frequency-
time filter for the convolutional layer. Our pooling strategy is
to use non-overlapping max pooling, and pooling in frequency
only is performed with a pooling size of 9.

2.2.2. F-LSTM

The LSTM architecture, as described in [12], consists of a set
of recurrently connected subnetworks, referred to a memory
blocks. Each memory block contains memory cells to store the
temporal state of the network, as well as three multiplicative
gate units to control information flow. The input gate controls
the information passed from the input activations into the mem-
ory cells, while the output gate controls the information passed
from the memory cells to the rest of the network. Finally, the
forget gate adaptively resets the memory of the cell. At each
step j, the LSTM model is given by the following equations:

ij = σ(Wixxj +Wimmt−1 +Wicct−1 + bi) (1)
fj = σ(Wfxxj +Wmfmt−1 +Wcfct−1 + bf ) (2)
cj = fj � ct−1 + ij � g(Wcxxj +Wcmmt−1 + bc) (3)
oj = σ(Woxxj +Wommt−1 +Wocct + bo) (4)
mj = oj � h(cj) (5)

where ij , fj , cj and oj denote the input, forget, memory
cell and output gate activations at step j. mj is the output of the
LSTM layer. W are the different weight matrices, for example
Wix is the weight matrix from the input gate to the input. � is
an element-wise dot product. Finally, σ is the logistic sigmoid
non-linearity while g and h are the cell input and output activa-
tions, which we take to be tanh. An LSTM is typically used to
model the speech signal in time, namely the input to the LSTM
at each time step t is given by xj = xt. Thus, we will refer
to the above model as a time LSTM (T-LSTM) for simplicity.
This type of layer is used in the LDNN architecture in Figure 1.

The frequency LSTM (F-LSTM) uses the exact same equa-
tions as given above, except that we model a sequential process
in frequency. Our F-LSTM implementation models that of [7].
Specifically, given input feature xt ∈ <N , we window the first
F elements from this feature, denoted by x0 = x0:Ft ∈ <F

T/F-LSTM T/F-LSTM

T/F-LSTM T/F-LSTM

T/F-LSTM T/F-LSTM

X0:7
0 X0:7

1

X1:8
0

T-LSTM

.

.
.
.

T-LSTM

T-LSTMT-LSTM

T-LSTM

DNN DNN

T-LSTM

X32:39
0

LDNN

output targets output targets

lin layer lin layer

frequency
processing

Figure 1: F-LSTM and TF-LSTM with LDNN. The dashed-
lines are ignored by the F-LSTM and indicate that the output of
the TF-LSTM is shared in both time and frequency.

and give this as input to the LSTM. At the next step, we stride
the window over the input by S, and take the next F features,
denoted by x1 = x

S:(F+S)
t ∈ <F , and pass this to the LSTM.

Hence the input to the LSTM (Equations (1) - (5)) at each fre-
quency step k is given by xj = xk = x

k∗S:(F+k∗S)
t . In

most cases S < F so the chunks have overlapping informa-
tion. The F-LSTM is thus unrolled over frequency by an amount
L = (N−F )/S+1. This process is shown pictorially in Figure
1. The output out of each F-LSTM, denoted by {m0, . . . ,mL}
are concatenated together and given to a linear dimensionality-
reduction layer, and then given to an LDNN. We will call the
F-LSTM with LDNN architecture an F-LDNN. In this work,
we will take feature dimension N = 128, filter size F = 24,
stride S = 4, and LSTM cells to be 64, to match similar filter
sizes and parameters with the CNN.

The F-LSTM is similar to the convolutional layer as both
models look over a small local frequency patch and share model
parameters as the filter is shifted. The main difference is that the
F-LSTM models frequency variations through a recurrent state
that is passed from one unrolled timestep to another. However,
the convolutional layer has a subsequent pooling step to achieve
local translational invariance. As argued in [1], the recurrent
state in F-LSTMs can emulate local competition among features
similar to max pooling. However, F-LSTMs have the added
benefit that there is no need to tune the pooling parameters.

2.2.3. TF-LSTM

The F-LSTM can be extended to model the sequential process
of the signal in both time and frequency jointly with a time-
frequency LSTM (TF-LSTM) [8]. Since speech has correla-
tions in both time and frequency, we believe that TF-LSTMs
should perform as good if not better than the F-LSTM. For each

814



frequency step k and time step t, the TF-LSTM is given by the
following equations:

it,k = σ(Wixxt,k +W
(t)
immt−1,k +W

(k)
im mt,k−1+

Wicct−1,k + bi) (6)

ft,k = σ(Wfxxt,k +W
(t)
fmmt−1,k +W

(k)
fmmt,k−1+

Wcfct−1,k + bf ) (7)

ct,k = ft,k � ct−1,k + it,k � g(Wcxxt,k +W (t)
cmmt−1,k+

W (k)
cmmt,k−1 + bc) (8)

ot,k = σ(Woxxt,k +W (t)
ommt−1,k +W (k)

ommt,k−1+

Wocct,k + bo) (9)

mt,k = ot,k � h(ct,k) (10)

In comparison to the F-LSTM and T-LSTM in Equations
(1)-(5), the TF-LSTM uses the output from the previous fre-
quency step (i.e., mt,k−1) and the previous time step (i.e.,
mt−1,k). These previous outputs are weighted by separate
weightsW (t)

∗m andW (k)
∗m respectively. Notice the TF-LSTM still

produces one output, mt,k, at each time-frequency (k, t) step.
In Figure 1, this shared output is denoted by a dotted line.

Given input feature xt ∈ <N , our TF-LSTM still windows
the input feature with a filter size of F and a stride of S, similar
to the F-LSTM. At each time step t, the output out of each TF-
LSTM, denoted by {mt,0, . . . ,mt,L} are concatenated together
and given to a linear dimensionality-reduction layer, and then
the LDNN.

2.2.4. Grid-LSTM

A grid-LSTM [10] is very similar to a TF-LSTM except there
are separate LSTMs which move in time and frequency. How-
ever, at a current time-frequency bin, the grid frequency LSTM
(gF-LSTM) uses the state of the grid time LSTM (gT-LSTM)
from the previous timestep, and similarly the gT-LSTM uses
the state of the gF-LSTM from the previous frequency step. The
motivation for looking at the grid-LSTM is to explore benefits
of having separate LSTMs to model the correlations in time and
frequency. The grid-LSTM in dimension j is given by the fol-
lowing equations at each time-frequency step (t, k):

i
(j)
t,k = σ(W

(j)
ix xt,k +W

(t)
imm

(t)
t−1,k +W

(k)
im m

(k)
t,k−1+

W
(t)
ic c

(t)
t−1,k +W

(k)
ic c

(k)
t,k−1 + b

(j)
i ) (11)

f
(j)
t,k = σ(W

(j)
fx xt,k +W

(t)
mfm

(t)
t−1,k +W

(k)
mfm

(k)
k−1,t+

W
(t)
cf c

(t)
t−1,k +W

(k)
cf c

(k)
t,k−1 + b

(j)
f ) (12)

c
(t)
t,k =f

(t)
t,k � c

(t)
t−1,k + i

(t)
t,k � g(W

(t)
cx xt,k +W (t)

cmm
(t)
t−1,k+

W (k)
cmm

(k)
t,k−1 + b(t)c ) (13)

c
(k)
t,k =f

(k)
t,k � c

(k)
t,k−1 + i

(k)
t,k � g(W

(k)
cx xt,k +W (t)

cmm
(t)
t−1,k+

W (k)
cmm

(k)
t,k−1 + b(k)c ) (14)

o
(j)
t,k = σ(W (j)

ox xt,k +W (t)
omm

(t)
t−1,k +W (k)

omm
(k)
t,k−1+

W (t)
oc c

(t)
t,k +W (k)

oc c
(k)
t,k + b(j)o ) (15)

m
(j)
t,k = o

(j)
t,k � h(c

(j)
t,k) (16)

In these equations, replacing j with t gives the gT-LSTM
and with k gives the gF-LSTM. Besides the dimension depen-
dent weight parameters W (j)

∗∗ , the major difference from TF-
LSTM is how each gate uses the previous output from both the
gF-LSTM m

(k)
t,k−1 and gT-LSTM m

(t)
t−1,k. When the weights

between two gT-LSTM and gF-LSTM are independent to each
other, as in [10], the computation cost of grid-LSTM is slightly
higher than TF-LSTM because of the separate weight matrices
that multiply the cell states in both time and frequency. When
the weight matrices are shared among the time and frequency
cells (for example W (t)

ic = W
(k)
ic in Equation 11), the compu-

tation of the grid-LSTM becomes similar to that of TF-LSTMs.
We will explore the performance of grid-LSTMs only with the
shared state to keep computation similar to the TF-LSTM.

At each time step t, the output of the gT-LSTM,
denoted by {m(t)

t,0, . . . ,m
(t)
t,L} and gF-LSTM, denoted by

{m(k)
t,0 , . . . ,m

(k)
t,L} are concatenated together and given to the

linear dimensionality reduction layer, followed by the LDNN.

2.2.5. ReNet-LSTM

A ReNet LSTM [1] is an F-LSTM unrolled in frequency and
T-LSTM unrolled in time. These two LSTMs are treated com-
pletely independently, meaning the recurrent state is not shared
when the F-LSTM and T-LSTMs overlap. The benefit of ReNet
is computational efficiency, as the two LSTMs can be run in
parallel. Since the LSTMs produce independent outputs, we
concatenate the outputs of both before giving them to a linear
dimensionality-reduction layer and then the LDNN.

3. Experimental Details
Our single channel experiments are conducted on∼2,000 hours
of mild-noise training set consisting of 3 million English utter-
ances. This data set is created by artificially corrupting clean
utterances using a room simulator, adding varying degrees of
noise and reverberation such that the overall SNR is between
5dB and 30dB. The noise sources are from YouTube and daily
life noisy environmental recordings. To understand the behav-
ior of 2D-LSTMs on different data sets, we also run experiments
training on a moderate-noise 2,000-hour data set, where clean
utterances are corrupted with both reverberation and additive
noise at SNRs ranging from 0 to 20 dB. Finally, multichannel
experiments are conducted on a training set with similar noise
configurations to moderate, using a 2 channel linear mic with
a 14cm spacing. Results are reported in matched conditions,
meaning models trained in mild-noise conditions are evaluated
on a mild-noise 20 hour test set of 30,000 utterances. All data
sets are anonymized and hand-transcribed, and are representa-
tive of Google’s voice search traffic.

All neural networks are trained with the cross-entropy cri-
terion, using asynchronous stochastic gradient descent (ASGD)
optimization [13]. The weights for all CNN and DNN layers are
initialized using the Glorot-Bengio strategy described in [14],
while all LSTM layers are uniform randomly initialized to be
between -0.02 and 0.02.

4. Results
4.1. Analysis with Log-Mel Features

First, we compare LDNNs, CLDNNs, F-LSTMs and TF-
LSTMs on the mild noise train/test set using log-mel features.
Table 1 shows the WER of these models. First, notice that the

815



CLDNN outperforms the LDNN. Second, the F-LDNN, which
has been argued to capture similar properties to convolution [1]
matches the performance of the CLDNN. Finally, the TF-LSTM
gives small improvements over the F-LSTM/CLDNN, showing
that it is better to model correlations in both time and frequency.

Model WER
LDNN 16.4

CLDNN 16.1
F-LDNN 16.0

TF-LDNN 15.9
Table 1: WER, Mild Noise

Second, we explore behavior of these models for the moder-
ate noise train/test set, as shown in Table 2. First, notice that in
the noisier conditions, the convolution layer in the CLDNN de-
grades performance compared to the LDNN. Since translational
invariance in the CNN is captured through local filters and pool-
ing, it is possible that as noise corrupts the signal, it becomes
more difficult to make these local decisions. However, notice
that the F-LDNN shows improvements over the CLDNN and
LDNN. In fact, the 2% relative gain observed by the CLDNN
over the LDNN for clean speech in Table 1, is achieved by the F-
LDNN in noisier conditions. Since the F-LDNN captures trans-
lational invariance through the recurrent connections, it can bet-
ter model the evolutionary path of the signal in frequency com-
pared to the CNN. Finally, again notice that by modeling cor-
relations in time and frequency with the TF-LDNN, we can
achieve improvements over all other models. Compared to the
baseline LDNN, the TF-LDNN has roughly a 3% relative im-
provement in WER. As stated before, to our knowledge this is
the first thorough comparison between convolution, F-LSTMs
and TF-LSTMs.

Method WER
LDNN 23.0

CLDNN 23.4
F-LDNN 22.7

TF-LDNN 22.3
Table 2: WER, Moderate Noise

4.2. Alternative Architectures

In this section, we futher compare the TF-LSTM with other al-
ternative architectures for modeling the time-frequency correla-
tions, that have been explored for computer vision [1, 10] but
never for speech. First, Table 3 shows that grid-LDNNs of-
fer an additional 1% relative improvement in mild and moder-
ate noise over the TF-LDNN, with a similar computational cost
since the weights of the cell state are tied between the gT-LSTM
and gF-LSTM. This shows that separate modeling of time and
frequency correlations, while sharing the states, is important.
However, performance with ReNet-LDNNs degrades for mod-
erate noise conditions, showing the importance of sharing the
state between T-LSTMs and F-LSTMs. We did not repeat the
ReNet-LDNN experiment for mild noise given the degradation
for moderate noise.

4.3. Performance with Learned Filterbank Features

Finally, we explore the behavior of grid LSTMs when we learn
a filterbank directly from the raw-waveform. We specifically
look at multichannel speech processing, where raw-waveform
processing is necessary to preserve the fine time structure of the

Model Moderate Noise Mild Noise
LDNN 23.0 16.4

CLDNN 23.4 16.1
TF-LDNN 22.3 15.9
grid-LDNN 22.1 15.7

ReNet-LDNN 22.9 -

Table 3: WER For Different Architectures

signal [15]. We explore grid LSTMs with the neural adaptive
beamforming (NAB) model [11]. We refer the reader to [11]
for a detailed description of the NAB model architecture, and
describe it at a high-level only here. In the first layer of this
model, for each frame, an “adaptive layer” takes a 35ms input
raw-waveform signal for each channel and uses a T-LSTM to
predict filter coefficients for each channel. These filters are con-
volved with the raw-waveform from each channel and the out-
puts are summed, mimicing filter and sum beamforming. Then,
a “spectral decomposition” is performed on the single chan-
nel raw-waveform, using a time-convolution layer with max-
pooling, very similar to [3]. This layer essentially learns a filter-
bank which is not constant-Q, and produces a 128-dimensional
frequency feature at each frame. This feature is then given to a
CLDNN/LDNN acoustic model.

We believe the NAB model suffers not only from the fre-
quency convolution that sits above the spectral decomposition
layer, not only because the learned filterbank is not constant-Q,
but also because the filter into the spectral layer changes ev-
ery frame because of the adaptive LSTM. Thus, we explore if
further improvements can be obtained replacing the CLDNN or
LDNN with a grid-LDNN.

Table 4 shows that the convolution layer in the CLDNN de-
grades performance. However, the grid-LDNN gives an 3% rel-
ative improvement in WER over the LDNN. This demonstrates
that modeling time-frequency correlations with a 2D-LSTM is
much more robust compared to convolution, even with a differ-
ent feature representation.

WER
LDNN 21.3

CLDNN 21.6
grid-LDNN 20.7

Table 4: WER with NAB model

5. Conclusions
In this paper, we presented different 2D-LSTM approaches
(F-LSTM, TF-LSTM, grid-LSTM, ReNet) to model time-
frequency correlations, and compared this to convolutional lay-
ers. We found that grid-LSTMs in the LDNN architecture (grid-
LDNN) offered the best performance of all 2D-LSTMs, particu-
larly when the input is noisy or the filterbank is learned. Overall,
the grid-LDNN shows between a 1-4% relative improvement
over an LDNN and CLDNN for a mild noise task, moderate
noise task, and multichannel task.

6. Acknowledgements
The authors would like to thank Eugene Brevdo, Oriol Vinyals
and Rafal Jozefowicz for discussions related to 2D-LSTMs.

816



7. References
[1] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. C.

Courville, and Y. Bengio, “Renet: A recurrent neural net-
work based alternative to convolutional networks,” CoRR,
vol. abs/1505.00393, 2015.

[2] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Con-
volutional, Long Short-Term Memory, Fully Connected
Deep Neural Networks,” in Proc. ICASSP, 2015.

[3] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Senior, and
O. Vinyals, “Learning the Speech Front-end with Raw
Waveform CLDNNs,” in Proc. Interspeech, 2015.

[4] T. N. Sainath, B. Kingsbury, A. Mohamed, G. Dahl,
G. Saon, H. Soltau, T. Beran, A. Aravkin, and B. Ram-
abhadran, “Improvements to Deep Convolutional Neural
Networks for LVCSR,” in Proc. ASRU, 2013.

[5] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term
Memory Recurrent Neural Network Architectures for
Large Scale Acoustic Modeling,” in Proc. Interspeech,
2014.

[6] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury, “Deep Neural Networks for
Acoustic Modeling in Speech Recognition,” IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[7] J. Li, A. Mohamed, G. Zweig, and Y. Gong, “LSTM Time
and Frequency Recurrence for Automatic Speech Recog-
nition,” in Proc. ASRU, 2015.

[8] A. Graves, S. Fernandez, and J. Schmidhuber, “Multi-
Dimensional Recurrent Neural Networks,” in Proc.
ICANN, 2007.

[9] J. Li, A. Mohamed, G. Zweig, and Y. Gong, “Exploring
Multidimensional LSTMs for Large Vocabulary ASR,” in
Proc. ICASSP, 2016.

[10] N. Kalchbrenner, I. Danihelka, and A. Graves, “Grid Long
Short-Term Memory,” in to appear in Proc. ICLR, 2016.

[11] B. Li, T. N. Sainath, R. J. Weiss, K. W. Wilson, and
M. Bacchiani, “Neural Network Adaptive Beamforming
for Robust Multichannel Speech Recognition,” in to ap-
pear in Proc. Interspeech, 2016.

[12] S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Computation, vol. 9, no. 8, pp. 1735 –
1780, 1997.

[13] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and
A. Ng, “Large Scale Distributed Deep Networks,” in Proc.
NIPS, 2012.

[14] X. Glorot and Y. Bengio, “Understanding the Difficulty of
Training Deep Feedforward Neural Networks,” in Proc.
AISTATS, 2014.

[15] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan,
and M. Bacchiani, “Factored Spatial and Spectral Multi-
channel Raw Waveform CLDNNs,” in in Proc. ICASSP,
2016.

817


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Tara N. Sainath
	Also by Bo Li
	----------

