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Abstract

This paper investigates the semi-supervised training for deep
neural network-based acoustic models (AM). In the conven-
tional self-learning approach, a “seed-AM?” is first trained by us-
ing a small transcribed data set. Then, a large untranscribed data
set is decoded by using the seed-AM to create a transcription,
which is finally used to train a new AM on the entire data. Our
investigation in this paper focuses on the different approach that
uses additional complementary AMs to form a committee of la-
bel creation for untranscribed data. Especially, we investigate
the case of using heterogeneous neural networks as complemen-
tary AMs, and the case of intentional exclusion of the primary
seed-AM from the committee, both of which could enhance the
chance to find more informative training samples for the seed-
AM. We investigated those approaches based on Japanese lec-
ture recognition experiments with 50-hours of transcribed data
and 190-hours of untranscribed data. In our experiment, the
committee-based approach showed significant improvements in
the word error rate, and the best method finally recovered 75.2%
of the oracle improvement with full manual transcription, while
the conventional self-learning approach recovered only 32.7%
of the oracle gain.

Index Terms: Semi-supervised training, deep neural network,
acoustic model

1. Introduction

In almost all cases, the larger the training data are, the better the
acoustic models (AMs) will be. However, manual transcription
of speech corpus is expensive and time-consuming. Thus, semi-
supervised learning [1] of AMs, in which AMs are trained on
small transcribed data and large untranscribed data, has been
gathering many attentions.

One widely-used approach of semi-supervised learning is
self-learning [2, 3, 4, 5, 6, 7]. In the self-learning approach, a
seed-AM is first trained by using a small transcribed data. Then,
a large untranscribed data is decoded by using the seed-AM to
create automatic transcription. Finally, the transcribed data and
untranscribed data with automatic transcription is used in com-
bination to train a new AM. Because automatic transcription
contains many errors, some form of confidence measure (CM)
is often used in combination to select reliable parts of the tran-
scription. One problem with self-learning with CM-based data
selection is, however, that “the data with high-CM” is often “the
data that the seed-AM has already been well-trained for”. Such
data has little information for updating the seed-AM.

In this paper, we investigate a different approach, in which
additional complementary AMs are introduced besides the pri-
mary AM to form a committee of label creation for untran-
scribed data. By using complementary AMs, the possibility to
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produce training samples that are not covered by the seed-AM
is enhanced. Note that, for Gaussian mixture model (GMM)-
based AMs, this kind of semi-supervised training has been ex-
plored at various levels of the system combination, such as the
systems with different feature types [8], different training data
sets [9], etc. However, in terms of deep neural network (DNN)-
based AMs [10, 11], most studies on semi-supervised training
were still based on the self-learning approach [4, 5, 6, 7, 12, 13]
and only limited studies which investigated the combination
with GMM-based AMs [14, 15, 16, 17] were reported.

Different from the previous reports, we investigate the use
of heterogeneous neural networks as complementary AMs. As
a notable progress of AMs, various extensions of network ar-
chitecture were recently studied, such as convolutional neural
networks (CNN) [18], sigmoid-unit-type recurrent neural net-
works (SigRNN) [19, 20, 21, 22, 22] and long short-term mem-
ory (LSTM) neural networks [23, 24, 25, 26, 27]. While the
main purposes of these studies were to improve the accura-
cies by using single models, these heterogeneous models could
bring very large diversity to produce training samples that the
primary AM could not produce by itself. We also investigate
a more radical approach, which intentionally excludes the pri-
mary AM from the committee of label creation. Since “the data
that are not covered by the primary AM” are basically (except
by accident) mis-recognized in the transcription by the primary
AM, simply excluding such transcription could enhance the
chance to produce informative training samples from the view-
point of the primary AM. This approach is known as “cross-
adaptation” [28, 29] and “cross-validation adaptation” [30] in
the speaker adaptation field, and we investigate the effect of
the approach for semi-supervised training settings. We experi-
mentally show that these approaches make the semi-supervised
training of DNN-AM significantly (more than double) effective
compared to the self-learning or the naive combination of ho-
mogeneous networks.

2. Semi-supervised training

In this study, we compare two approaches of semi-supervised
training. One is the conventional self-learning approach, and
one is the committee-based approach.

2.1. Self-learning

The training protocol of self-learning is as follows.

1. A seed AM is trained by using a small supervised data
set.

2. A large unsupervised data set is decoded by using the
seed AM to create an automatic transcription.

3. Frame-level CM in the automatic transcription is calcu-
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lated, and data frames that are above threshold in CM
are selected as training samples. In this paper, we used
posterior-based CM after minimum Bayes risk decoding

[4].

4. Finally, the supervised data set and selected portion of
the unsupervised data set are jointly used for re-training
of the seed AM.

2.2. Committee-based semi-supervised training

The training protocol of the committee-based semi-supervised
training that we focus on in this paper is as follows.

1. A primary AM and additional complementary AMs are
trained by using a small supervised data set.

2. A large unsupervised data is decoded by using each AM
to create multiple automatic transcriptions.

3. Multiple transcriptions are then lined up, and data frames
that the labels from multiple results agree on a certain
level are selected as training samples. In this study,
we used the frame-level coincidence of hidden Markov
model (HMM) state in each transcription. Namely, if the
HMM state of time frame ¢ in all or some transcriptions
are matched, the data in time ¢ is used as the training data
with the label of the corresponding HMM state .

4. Finally, the supervised data set and selected portion of
the unsupervised data set are jointly used for re-training
of the primary AM.

To make the experiment simple, we mixed-up the supervised
and unsupervised training samples in random order, without
applying any importance weighting for each sample. Various
combinations of models/agreements options were tested, which
will be discussed in the experiment section.

3. Neural Network based-AM

In this paper, we used a hybrid framework of neural networks
and HMMs (DNN-HMM hybrid framework) [10, 11]. We used
three types of neural network-based AMs; DNN, SigRNN and
LSTM.

DNN is an artificial neural network with multiple hidden lay-
ers. When applying DNNs for acoustic modeling, each
node in the output layer is set to correspond to a HMM
state. Because DNNs originally represent the posterior
probability of HMM-state given observation, the emis-
sion probability for decoding is estimated by applying a
Bayes conversion in the DNN-HMM hybrid framework
[10, 11].

SigRNN, also known as Elman network [31], is an artificial
neural network with additional recurrent connection in a
hidden layer, which enables the model to represent long-
term time dependencies. Recently, some researchers
proposed deep recurrent neural networks [20, 21, 22],
consisting of multiple recurrent layers, sometimes with
additional non-recurrent layers. In this paper, we use
deep recurrent neural networks in which each hidden
layer has a recurrent connection.

IWe assume each transcription has an alignment information of the
HMM state. We also assume the label for AM training corresponds to a
HMM state.
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LSTM [32] enhances RNN by incorporating cells to preserve
long-term memory. In LSTM, three gating units — input,
output and forget gates — control the information flow in
the cells. In most of recent cases [23, 24, 25, 26, 27],
multiple LSTM layers were stacked to obtain better re-
sults. In this paper, we also use the deep LSTM, which
consists of multiple LSTM layers.

4. Experiment
4.1. Evaluation settings

Evaluations were conducted using lecture recordings from the
“Corpus of Spontaneous Japanese (CSJ) [33]”, which is one of
the most famous evaluation set of Japanese speech recognition
[34, 35]. The corpus contains three types of data, each com-
prising 10 lecture recordings. The durations of evaluation set
1, set 2 and set 3 are 2.0 hours, 2.1 hours and 1.5 hours, re-
spectively. Besides the three evaluation sets, we picked up 10
lecture recordings (2.1 hours) as the development set to tune
system parameters.

As supervised (=transcribed) training data for the acoustic
models, we randomly picked up 50-hours (200 talks) of “aca-
demic lecture” recordings of the CSJ. In addition, remaining
190-hours (757 talks) of academic lecture recordings of CSJ
were used as unsupervised (=untranscribed) data.

As a primary acoustic model of our investigation, a DNN
acoustic model with 5 hidden layers, each comprising 1,024
nodes, was trained using 50-hours of supervised data. The
output layer had 4,086 nodes, which corresponded to context-
dependent phone HMM states. As acoustic features, 72 dim
filter-bank features (24 filter-bank features, delta coefficients
and delta-delta coefficients) with mean and variance normal-
ization per speaker were used. We concatenated the features
of both the previous and following seven frames (15 frames of
features in total) when inputting to DNNs. The DNN was ini-
tialized using the discriminative pre-training method [36] and
was fine-tuned using the standard stochastic gradient descent
(SGD) based on the cross-entropy loss (CE) criterion.

In addition to the primary DNN, we trained two comple-
mentary AMs with the same architecture (5 hidden layers, 1,024
nodes), but with different input features. One is a DNN model
with 39 dim MFCC features (13 MFCC features, delta coeffi-
cients and delta-delta coefficients). The other is a DNN model
with 39 dim PLP features (13 PLP features, delta coefficients
and delta-delta coefficients). Both models were trained by us-
ing the same recipe that was used for the baseline model.

Furthermore, we trained two complementary AMs with dif-
ferent network architectures. The first one is a SigRNN model
with 5 hidden layers, each of which had 512 nodes. The second
one is a deep LSTM model with 2 LSTM layers, each compris-
ing 512 nodes. Both models were trained based on the same
recipe as follows. The output layer had 4,086 nodes, as in the
DNN models. The 72 dim filter-bank features were used as
acoustic features. When features were fed into the SigRNN or
LSTM, the prior and subsequent three frames of features were
concatenated. Additionally, we delayed the reference label by
four frames. Consequently, these models could observe seven
future frames to predict the reference label. We used the sparse
initialization technique [37] with no pre-training. Both mod-
els were trained by one-sample backpropagation through time
(BPTT) with pseudo shuffling technique [22] with a nine-frame
back step.

For the language model (LM) for decoding, we trained a



Table 1: WER of various neural network based AMs trained by
50-hours of supervised data.

Model WER (%)

El E2 E3 E (ave)

Fbank DNN 17.44 15.04 17.04 | 16.51

MFCC DNN 18.05 1554 17.07 | 16.89

PLP DNN 18.11 1585 17.14 | 17.03

Fbank SigRNN 1823 1540 16.73 | 16.79

Fbank LSTM 17.05 1519 1698 | 16.41
Combination by ROVER [39] 16.84 1391 1525 | 1533

Table 2: WER of self-trained fbank-DNN with 50-hours of su-
pervised data and additional 190-hours of unsupervised data.
FA and duration of unsupervised data after CM-based data se-
lection are also listed.

CM FA  Dur. WER (%)
(%) (hour) ~ EI E2 E3 [ E (ave)

(Baseline) - 0 1744 1504 17.04 | 1651
=1.0 960 90  17.16 14.62 1666 | 16.15
>=09 938 129 17.08 1461 1679 | 16.16
>=08 928 140 1692 1448 16.65 | 16.02
>=0.7 919 148 1698 1461 1649 | 16.03
>=00 865 190 17.03 1464 1635 | 16.01
(Oracle)  100.0 190  16.00 13.64 1529 | 14.98

4-gram model with 644K sentences from the CSJ. Note that
the data for LM training and data for {evaluation, development,
unsupervised-training} did not overlap with each other. We
used Kneser—Ney smoothing [38] and the vocabulary size was
77K. When decoding, we tuned the LM weight and word inser-
tion penalty by using the development set. Then, the best LM
weight and word insertion penalty of the development set was
used to decode the evaluation sets.

4.2. Baseline 1: CE-model with small supervised data

We first evaluated the primary fbank-DNN and other four AMs.
The results are listed in Table 1. Fbank-DNN was slightly
better than MFCC and PLP-based DNNs. Fbank-based DNN,
SigRNN and LSTM showed almost the same accuracies in this
experiment. We believe the limited amount of training data
made the accuracy differences between AMs small 2. We could
observe that the WERs for each evaluation set were very differ-
ent for each AM although the five AMs produced similar WERs
on average. In the rest of this paper, we focused on the semi-
supervised training of the primary fbank-DNN AM.

4.3. Baseline 2: self-learning with CM thresholding

We then evaluated the self-learning method with CM-based data
selection. We decoded the 190-hours of unsupervised data by
using fbank-DNN AM. Then, reliable frames of the transcrip-
tion were selected based on the CM. Finally, CE-training was
conducted by using the combination of 50-hours of supervised
data and selected portions of unsupervised data.

Results with various thresholding values are listed in Table
2. Note that if we used the higher thresholding values of CM
(eg, 0.9), the total duration of the selected data became small
while the frame accuracy (FA) of selected training samples be-
came high. Thus, there is a trade-off between the accuracy and

2In fact, we observed the better WER of SigRNN or LSTM than that
of DNN with larger amount of training data in our preliminary experi-
ments.

1327

——Oracle
-X%--Self-learning
A Hetero-Committee

0 50 100

150
Additional training data (hour)

200

Figure 1: Relation between WER and the amount of the addi-
tional unsupervised training data.

data size. Contrary to our expectation, the best WER (16.01%)
was obtained when we used the training data with no thresh-
olding (i.e., CM>=0.0), which corresponds to 3.0% of relative
improvement.We thought that CM-based thresholding was not
effective because the FA of transcription was relatively high in
this experiment *.

It is important to note that only 0.36 points of improvement
were obtained with CM-thresholding=1.0 despite the addition
of 90 hours of highly accurate transcription (FA=96.0%). As
a reference, we also trained AMs with a manual transcription
of the unsupervised data (oracle settings). Results are shown in
Figure 1 as “Oracle”. As shown in this figure, if we could use
only about 20 hours of oracle training data, we could achieve
the same gain by the 90-hour data selected by CM. This result
clearly demonstrated how inefficient the self-learning was. As
mentioned in the introduction, this was because the data with
high-CM was the data that the seed-AM had already been well-
trained for.

When we used full manual transcription of 190 hours of un-
supervised data, a much better WER of 14.98% was achieved,
which corresponds to 9.3% of relative WER improvement from
the baseline model. Compared to this oracle AM, the best
self-trained DNN recovered only 32.7% of the oracle gain *.
It is also noteworthy that the oracle result was better than the
combination of five AMs by the ROVER method [39] (the last
row of Table 1), which supported the importance of the semi-
supervised training. These results led us to the investigation of
the efficient semi-supervised training.

4.4. Semi-supervised training based on the committee of
homogeneous AMs

We then evaluated the semi-supervised training based on the
committee of three homogeneous AMs; fbank-DNN, MFCC-
DNN and PLP-DNN. Results are listed in the upper part of Ta-
ble 3. In this table, we also listed the FA and the duration of
selected training samples from unsupervised data.

When we used the agreement parts of the three models, we
obtained 145 hours of additional training samples with 91.8%
of FA. Although these statistics were almost the same as the
case of self-learning with threshold=0.7, slightly better WER of
15.94% was achieved. This result indicated that the committee-

3Note that CM thresholding was sometimes degraded the perfor-
mance even in previous literatures like [13, 40].

4This measure is known as WER recovery [2], which we also use in
the remaining sections.



Table 3: WER of semi-supervised fbank-DNN based on the committee of homogeneous or heterogeneous networks. We used 50-hours
of supervised data and additional 190-hours of unsupervised data. FA and duration of unsupervised data after data selection are also
listed. Note that FA was calculated based on Fbank-DNN based alignment with the manual transcription.

Committee FA Dur WER (%) Relative WER
(%)  (hour) El E2 E3 E (ave) Impr. (%) Recovery (%) [2]

(Baseline) - 0 17.44 15.04 17.04 | 16.51 - -
Agreement of {Fbank, MFCC, PLP}-DNN 91.8 145 16.88 14.59 1635 | 15.94 3.4 37.0
Agreement of {MFCC, PLP}-DNN 84.6 159 1695 14.66 1634 | 1598 32 342
2/3 agreement of {Fbank, MFCC, PLP}-DNN  84.0 182 17.24 14.61 1656 | 16.14 22 24.2
Agreement of {DNN, SigRNN, LSTM} 93.7 136 16.87 14.36 16.09 | 15.77 4.4 47.9
Agreement of {SigRNN, LSTM} 85.2 151 16.61 14.17 15.29 | 15.36 7.0 75.2
2/3 agreement of {DNN, SigRNN, LSTM } 84.1 179 16.75 1426 15.65 | 15.55 5.8 62.3
(Oracle) 100 190 16.00 13.64 1529 | 14.98 9.3 100.0

based data selection works as accurate as CM-based data selec-
tion, but with slightly high potential to find valuable training
samples.

When we excluded the fbank-DNN from the committee
(“Agreement of {MFCC, PLP}-DNN”), WER was marginally
degraded. However, the important observation here is that
while FA was much worse than the case of self-learning °, the
WER was comparable to that of self-learning. This result sug-
gested that the FA is not necessarily the appropriate measure of
training samples for semi-supervised training, as suggested in
the self-learning experiment in which highly-accurate 90-hours
data produced only marginal improvement. When we used the
data in which two of three transcriptions agreed (‘“2/3 agree-
ment of {Fbank, MFCC, PLP}-DNN”), the WER became much
worse even than the self-learning. This result again suggested
the unimportance of the primary-AM-based transcription.

4.5. Semi-supervised training based on the committee of
heterogeneous AMs

Finally, we evaluated the semi-supervised training based on the
committee of three heterogeneous AMs; fbank-DNN, fbank-
SigRNN and fbank-LSTM. Results are listed in the lower part
of Table 3. When we used the agreement part of the three mod-
els, 136 hours of training samples were selected with 93.7% of
FA. The amount of training samples were smaller than the case
of the committee of homogeneous networks (145 hours), which
indicated that the models with different network structure had
larger diversity than the models with different input feature set.
Although the statistics were similar to the case of self-learning
with threshold=0.9, the WER was much improved to 15.77%
by adding this 136 hours of data.

The best, and the most interesting result was obtained when
we excluded the primary fbank-DNN model from the commit-
tee (“agreement of SigRNN and LSTM”). In this case, the WER
was further improved to 15.36%. Relative WER reduction be-
came 7.0%, which corresponded to 75.2% of oracle gain by us-
ing full manual transcriptions. This phenomenon demonstrated
that the primary-AM was not only useless but could be even
harmful when constructing the training data for the primary-
AM. Some readers may notice that the difference between this
setting and the three-committee setting was only 15-hour data
with very low FA (only 8%). Although the quality of the
data seems poor, the data contained many “acceptable” labels
with only few frames time-lag to the reference label created

5The FA could become worse than the worst case of self-learning
(86.5%), because the agreement part of MFCC and PLP-based DNNs
sometimes produced different labels that the fbank-DNN never pro-
duced.

Table 4: Average WER of sMBR-trained fbank-DNN with vari-
ous seed CE models. We used only 50-hours of supervised data

Jfor sMBR training.
Seed CE-model WER (%)
of sSMBR training Before sMBR  After sMBR
Baseline DNN with small data 16.51 15.93
Self-trained DNN 16.01 15.12
Hetero-committee-based DNN 15.36 14.63
Oracle DNN with full data 14.98 14.18
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by fbank-DNN. In addition, the data was much valuable than
other samples because the data was the one that the fbank-DNN
never produced by itself. As a result, the large improvement
was obtained regardless of the data size and its superficial qual-
ity. When we used the data in which two of three transcriptions
agreed (“2/3 agreement of {DNN,SigRNN,LSTM}”), WER
was degraded to 15.55%, which again indicated the unnecessity
of the primary-AM when creating the data for the primary-AM.

We plotted the best result in Figure 1. From this figure, we
could see that while the improvements made by self-learning
roughly correspond to only 30-hours of oracle data, the het-
erogeneous committee-based method achieved significant im-
provements which roughly correspond to adding 130-hours of
oracle data. This result showed how efficient the heterogeneous
committee-based method was compared to the self-learning ap-
proach.

Finally, we conducted the sSMBR-training [41] starting from
the semi-supervised-trained AMs. In this experiment, we used
only 50-hours of supervised data because the SsMBR-training
was very sensitive to noise in automatic transcription and we
could not achieve any improvement with semi-supervised set-
tings. The results with various seed models are listed in Ta-
ble 4. As shown in the table, the differences between semi-
supervised methods were preserved even after SMBR training.
Our best model based on the committee of heterogeneous mod-
els achieved 14.63% of WER after sMBR training, showing
only 0.45 point difference with the oracle model-based result.

5. Conclusion

In this paper, we investigated the semi-supervised training in
which additional complementary AMs are introduced to form
a committee of label creation for untranscribed data. Espe-
cially, we investigated the case of using heterogeneous neural
networks as complementary AMs, and the case of intention-
ally excluding the primary seed-AM from the committee. Both
approaches achieved much better improvements than the self-
learning or naive combination of homogeneous networks, show-
ing 75.2% of recovery of oracle improvement.
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