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Abstract

The automatic transcription process of spoken document re-
sults in several word errors, especially when very noisy con-
ditions are encountered. Document representations based on
neural embedding frameworks have recently shown significant
improvements in different Spoken and Natural Language Un-
derstanding tasks such as denoising and filtering. Nonethe-
less, these methods mainly need clean representations, failing
to properly remove noise contained in noisy representations.
This paper proposes to study the impact of residual noise con-
tained into automatic transcripts of spoken dialogues in highly
abstract spaces from deep neural networks. The paper makes
the assumption that the noise learned from “clean” manual tran-
scripts of spoken documents moves down dramatically the per-
formance of theme identification systems in noisy conditions.
The proposed deep neural network takes, as input and output,
highly imperfect transcripts from spoken dialogues to improve
the robustness of the document representation in a noisy envi-
ronment. Results obtained on the DECODA theme classifica-
tion task of dialogues reach an accuracy of 82% with a signifi-
cant gain of about 5%.
Index Terms: spoken dialogues, deep neural networks, denois-
ing autoencoders, deep stacked autoencoders.

1. Introduction
Research on spoken language understanding (SLU) items such
as conversation analysis, speech analytics, topic identification
and segmentation are receiving an increasing attention as docu-
mented in [1, 2, 3, 4, 5] and [6] respectively.
In this paper, another original solution based on Deep Stacked
Autoencoders (DSAEs) [7] is proposed. These DSAEs are
trained to extract latent features robust to the noise affecting
corrupted input. This robust representation can be extended to
topic identification of any type of possibly corrupted or partially
corrupted documents. Experimental evidence is provided that,
using a multilayer perceptron (MLP) classifier fed by DSAEs
features, provide higher theme identification accuracy than the
same classifier fed by other types of features estimated for re-
constructing the manually or automatically transcribed input.
Denoising Autoencoders (DAE) [8] have been recently gener-
alized into Generative Stochastic Networks (GSN) [7] with the
purpose of learning estimations of the input data distribution.
The DSAEs proposed in this paper have the purpose of modify-
ing the latent representation of a noisy input distribution to ap-
proach the classification accuracy that would be obtained with
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a clean representation of the same document. Such a denois-
ing task also differs from adapting a classification process to
improve the classification accuracy of the same document. The
rest of this paper is organized as follows. Related work and pro-
posed approaches are described in Sections 2 and 3. Section 4
presents the experimental protocol while Section 5 reports re-
sults. Finally, Sections 6 and 7 discuss and conclude the work.

2. Related Work and Motivations
Different types of multilayer networks have been proposed for
denoising purposes. Among them, [9] and [10] propose an au-
toassociative memory to retrieve data from partial information.
More recently, solutions have been proposed by [8, 11, 12].
Recent advances in deep learning [7] have shown impressive
performance in image classification and regression [9, 10], lan-
guage [8, 11] or speech [12, 13] processing. Autoencoders [10]
are widely used to obtain latent representations capturing suf-
ficient information to reconstruct the input data. These rep-
resentations are effectively used for pre-training deep neural
networks (DNN) [14]. Deep Autoencoders (DAEs) have been
proposed [15] to improve the reconstruction robustness in pres-
ence of noise affecting input data. Interesting results have been
obtained with DAEs in domains such as medicine [16], biol-
ogy [17], image processing [18], motions [19], music [20] and
speech [21]. These DAEs use the same vector for representing
inputs and outputs. Their parameters are estimated by artifi-
cially corrupting the input with additive noise. There is no evi-
dence that DAEs with a single hidden layer effectively capture
intra- and inter-words distribution structures.
The proposed deep supervised autoencoder extracts from ho-
mogeneous input/output vectors a robust representation in a
small latent subspace. This work differs from the previous ones
because the “noise” part of the input vector is obtained with
predefined transformation function (gaussian noise. . . ). More-
over, the proposed Deep Stacked Autoencoder (DSAE) learns
robust features from highly imperfect transcripts obtained from
an ASR system in actual use conditions.

3. Proposed approach
This section reviews basic AE and DAE concepts to highlight
the ideas that inspired the proposed approach and the novelties
that have been introduced to properly address the problem of
identifying the themes of real-life telephone dialogues.

3.1. Document representation

The task considered in this paper is the reconstruction of a fea-
ture distribution corrupted by the imprecision of the feature ex-
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traction component. Features are obtained from a set of 707
content words exhibiting high mutual information with the ap-
plication domain themes. Given a document of a corpus D, an
input feature vector x is defined with the i-th element xi com-
puted as follows:

xi = |ti| ×∆(ti) (1)
where |ti| is the number of occurrences of ti in the docu-

ment and ∆(ti) is the product between the inverse document
frequency and the word purity defined with the Gini criterion.
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Figure 1: Illustration of the autoencoder model with an input
features layer, one hidden layer and the output units. For read-
ability, biases are omitted here.

3.2. Basic Concepts of an Autoencoder (AE)

The autoencoder (AE) network is a feed-forward three-layered
neural network made of an encoder and a decoder (see Fig-
ure 1). The encoder computes a hidden representation of x made
of a vector h of size m (number of hidden units) as follows:

h = σ(W(1)x + b(1)) , (2)

where W(1) is a m × n weight matrix and b(1) is a m-
dimensional bias vector. σ(.) is the hyperbolic tangent activa-
tion function defined as:

σ(y) =
ey − e−y

ey + e−y (3)

The decoder attempts to reconstruct the input vector x from the
hidden vector h to obtain the output vector x̃:

x̃ = σ(W(2)h + b(2)) , (4)

where the reconstructed vector x̃ is a n-dimensional vector,
W(2) is a n × m weight matrix and b(2) is a n-dimensional
bias vector.
During learning, the autoencoder attempts to reduce the recon-
struction error l between x and x̃ by using the traditional Mean
Square Error (MSE) [22] (lMSE(x, x̃) = ||x − x̃||2) for mini-
mizing the total reconstruction error LMSE with respect to the
parameters set θ = {W(1), b(1),W(2), b(2)}:

LMSE(θ) =
1

d

∑
x∈D

lMSE(x, x̃) =
1

d

∑
x∈D

||x− x̃||2 (5)

Two autoencoders are trained in this paper. One for reconstruct-
ing features (x(ASR)) of automatic ASR transcriptions and the
other for recounting features (x(TRS)) of manually transcribed
documents. The parameters estimated for these autoencoders
are used to initialize the elements of the weight matrices W(ASR)

and W(TRS) used to estimate the bottleneck features of the de-
noising autoencoder that will be introduced later on.

3.3. Denoising Autoencoder (DAE)

The aim of an autoencoder is to build a robust generative model
to encode and decode a given input vector x in a latent space
h. During the learning process, the autoencoder fails to sepa-
rate robust features relevant information and residual noise for
a given input distribution [23]. For this reason, [23] proposes to
corrupt the inputs before the encoding process and then decode
this noisy representation to a clean one with a Denoising Au-
toencoder (DAE). In this way, the DAE is expected to recover
a clean representation from a noisy input by learning a robust
generative model.

h

(corrupted)

L(x,x)~
(W ,b )f

xxx ~

Hidden 
vector

(1)(1) (W ,b )
g (2)(2)

Figure 2: Denoising autoencoder architecture. An input vector
x is stochastically corrupted to obtain x(corrupted), then mapped
to the latent space h to extract the reconstructed vector x̃. The
reconstruction error is evaluated with the loss function L.

Figure 2 shows the scheme of a denoising autoencoder ar-
chitecture. In this model, the input vectors x are considered
as “clean” representations. The aim of this DAE is to ob-
tain a robust reconstruction from an input vector to a clean
output one. Therefore, x is artificially corrupted via a func-
tion that can be an Additive isotropic Gaussian Noise (GS)
x(corrupted)|x ∼ N

(
x, σ2I

)
or a Salt-and-pepper Noise (SN).

This corrupted input x(corrupted) is then mapped to a hidden layer
h = f(W(1),b(1)) = σ(W(1)x(corrupted)+b(1)). The reconstructed
vector x̃ is obtained in a same manner x̃ = g(W(2),b(2)) =

σ(W(2)h+b(2)). During the learning process, the denoising au-
toencoder learns the parameters θ = {W(1), b(1),W(2), b(2)}
to minimize the reconstruction errorL(x, x̃). The motivation for
using this type of DAE is that a good representation h of a cor-
rupted or partially destroyed representation of an input vector x
is informative of x and invariant to a perturbation x(corrupted) of x
due to noise. The problem considered in this paper is different
since input features are extracted from already noisy real-life
spoken documents. Such a noise is unpredictable and a noise
model cannot be identified as the corruption of a clean input.

3.4. Proposed Deep Stacked Autoencoders (DSAE)

It has been argued in [24, 9] that DNNs may encode input data
at progressively deeper levels of abstraction in successive hid-
den layers of stacked autoencoders. In a DNN of this type with
k hidden layers, the latent features at the i-th intermediate hid-
den layer, for an input vector x, are computed as the elements
of a vector h(i) as follows: h(i) = σ(W(i)h(i−1) + b(i)) ∀i ∈
{1, . . . , k} and h(0) = x. Therefore, each layer is pre-trained
as a shallow autoencoder for a fixed number of iterations. The
learnt hidden layer vector h(i) is stored and used to learn the
next layer h(i+1). Greedy pre-training is progressively per-
formed in this way starting with h(i+1). After pre-training the
last layer, a fine-tuning is performed on the entire stack of hid-
den layers to obtain a generative model providing different lev-
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els of abstractions for the input vector x.
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Figure 3: Illustration of the proposed bottleneck features (b) and
a deep denoising autoencoder (DDAE) (a).

4. Experimental Protocol
The effectiveness of the proposed robust bottleneck features
based on a deep stacked autoencoder is evaluated in the applica-
tion framework of the DECODA corpus [25, 26, 27]. A classifi-
cation approach based on a Multilayer Perceptron is performed
to find out the main theme of a given real-life dialogue.

4.1. DECODA Corpus and input features

The corpus is a set of human-human telephone conversations
from the customer care service of the RATP Paris transporta-
tion system from the DECODA project [25], used to perform
experiments on the conversation theme identification. It is com-
posed of 1,242 telephone conversations, corresponding to about
74 hours of signal, split as described in [25]. Each Conversation
has been manually transcribed and labeled with one theme (on
8 possible themes) corresponding to the principal conversation
concern. The train set is used to compose the subset of discrim-
inative wordswith the TF-IDF-Gini method. For each theme, a
set of 100 theme specific words is identified to form a vocab-
ulary of 707 words. All the selected words are then merged
without repetition and a same word may appear in more than
one theme vocabulary selection.

4.2. Automatic Speech Recognition (ASR) System

The LIA-Speeral ASR system [28] with 230,000 Gaussians in
the triphone acoustic models has been used for the experiments.
The vocabulary contains 5,782 words. A 3-gram language
model (LM) was obtained by adapting a basic LM with the tran-
scriptions of the DECODA train set. The ASR system word
error rate (WER) is 33.8% on the train, 45.2% on the develop-
ment, and 49.5% on the test set. These high WER are mainly
due to speech disfluencies and to adverse acoustic environments
for some dialogues (calls from train stations, noisy/crowded
streets with mobile phones...). A close WER has been reported
on a similar corpus type (call-center conversations) [29].

4.3. Autoencoders Setup

Two autoencoders are trained as explained in Section 3.2. The
input of the former, called AEASR, is a feature vector x(ASR) of
noisy documents. The input of the latter, called AETRS, is a fea-
ture vector x(TRS) of clean documents.

Both autoencoders have one 50 nodes hidden layer h. A deep
stacked autoencoder (DSAE) (see Figure 3-(b)) is trained to ex-
tract features from the bottleneck layer h(2). It uses noisy term-
frequency vectors x(ASR) as input. The h(1) and h(3) hidden
layers have both 50 neurons, the bottleneck h(2) has 300 neu-
rons and the size of the reconstructed output x̃(ASR) is equal to
the size of the clean term-frequency vectors.
For comparison, a denoising autoencoder (DAE) is trained and
evaluated. Its input is from ASR and output from TRS with a
hidden layer of size 50 (see Figure 2) without the additional ar-
tificial noise (arrow between x(corrupted) = x(ASR) and x = x(TRS))
and a deep denoising autoencoder (DDAE) with 3 hidden layers
of the same size than the DSAE.
The robustness to noise of these different architectures is eval-
uated with the accuracy metric on DECODA theme identifica-
tion task. Themes are hypothesized by a multi-layer percep-
tron (MLP) with one hidden layer with 256 nodes and an output
layer with 8 neurons each corresponding to a theme. The Keras
library [30], that uses Theano [31] for fast tensor manipulation
and CUDA-based GPU acceleration, has been used to imple-
ment autoencoders, trained on the Nvidia GeForce GTX TITAN
X GPU card. The MLP learning process lasts 8.33 minutes. The
processing times of the architectures are as follows: 10 minutes
for AE, 25 minutes for DAE, and 25 minutes for DSAE.

5. Experiments and Results

Experimental results on theme identification with shallow au-
toencoders (AE) reported in Section 5.1 show that a AE with
input and output from ASR outperforms an hybrid denoising
autoencoder. In Section 5.2, results obtained with deep au-
toencoders are compared with those obtained with the proposed
deep stacked autoencoder.

5.1. Homogeneous and hybrid autoencoders

Table 1 presents theme classification accuracies with features
from autoencoders obtained with two different transcription
conditions (manual TRS or automatic ASR). For comparison,
accuracies are reported with different MLP classification inputs:
input x, hidden h and output x̃. It is worth emphasizing first
that the best accuracies observed are obtained with hidden vec-
tors for homogeneous conditions (ASR → ASR and TRS →
TRS) with a gain of 3.9 and 0.7 points for ASR and TRS re-
spectively. Accuracies obtained with the hybrid denoising au-
toencoder (DAE) from ASR → TRS decrease when the vec-
tor representation becomes more and more abstract (Acc.(x̃) <
Acc.(h) < Acc.(x)). As expected, we can note that errors con-
tained in the automatic transcriptions of noisy documents lower
the accuracy, from 84.1% to 81% for the vector h for exam-
ple. The accuracy of 84.1% obtained with the AETRS is the
best classification result obtained with manual transcriptions. It
represents the upper bound of the classification accuracy that
can be obtained by denoising the ASR transcriptions (target of
the approach proposed in this paper). The best results with
ASR generated word hypotheses are obtained by feeding an
MLP classifier with the latent representation h obtained with the
DAE architecture shown in Figure 2. This suggests considering
DDAEs with progressive denoising hidden layers to feed the
highest classification layer with parameters trained with clean
input as shown in Figure 3a. These DDAEs are compared with
various types of bottleneck features in a deep stacked autoen-
coder DSAE as shown in Figure 3b.
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Table 1: Theme classification accuracies (%) obtained at the
output of an MLP classifier with input features x ,and h as
shown in Figure 2 .

Method Input Output Accuracy on test set
data data input x hidden h output x̃

AEASR ASR ASR 77.1 81 79
AETRS TRS TRS 83.4 84.1 83.7
DAE ASR TRS 77.1 74.3 70.3

5.2. Deep denoising autoencoder (DDAE) vs. proposed
deep stacked autoencoder (DSAE)

Table 2 compares the classification accuracies of features from
the proposed deep stacked autoencoder (DSAE) and a deep de-
noising autoencoder (DDAE). The “Real” accuracies observed
for the Test dataset are obtained depending on the Best accu-
racy reached by the Dev. set depending on the number of iter-
ations during the learning process of the MLP classifier. This
MLP uses input features hn as well as x̃ extracted by the ar-
chitectures in Figure 3 with TRS output ( Figure 3a) and ASR
output (Figure 3b). The best results with ASR generated word
hypotheses are obtained by feeding an MLP classifier with the
latent representation that corresponds to the deepest level of ab-
straction before input reconstruction. Best results are obtained
with DSAE that achieves a noteworthy accuracy of 82%, this
result being quite close to the one reached by the AE with clean
input and output (AETRS). A higher number of hidden layers re-
duces the classification performance, dropping in the worst case
to 69.4% with DDAE’s h(3). The proposed DSAE obtains good
accuracies with a gain of 9.5 points compared to DDAE. This is
mainly due to the fact that DSAE is trained only with the ASR
input/output, the mismatch reconstruction error with the clean
desired output TRS not being back-propagated through its hid-
den layers. The proposed DSAE learns more robust features to
noise by reaching a higher level of abstraction.

Table 2: Theme classification accuracies (%) obtained from an
MLP with input features hn and x̃ extracted by the architectures
in Figure 3 with TRS output (Figure 3a) and ASR output (Figure
3b).

Autoencoder Layer Best Dev Real Test Best Test
employed vector Accuracy Accuracy Accuracy

Deep h(1) 78 72.5 72.7
Denoising h(2) 77.1 70.0 70.6

Autoencoder h(3) 80.5 69.4 70.0
(DDAE) x̃ 76.5 69.7 70.9

Deep h(1) 87.0 81.7 82.8
Stacked h(2) 88.0 82.0 83.0

Autoencoder h(3) 87.4 80.1 81.9
(DSAE) h(4) 87.0 81.0 83.1

6. Discussion
Table 3 compares the best accuracies of the different architec-
tures and features proposed in this paper. Firstly, the AEASR

and DSAE methods are among the more robust evaluated ap-
proaches. This can be explained by the fact that these neural
networks are both able to remove an important portion of the
noise contained in the documents. The classical AE with ASR
for both input and output outperforms the DAE with heteroge-
neous conditions (input from ASR and output from TRS). This
is mainly due to the fact that during the learning process, the

quadratic error between the desired clean output and the ground
truth output from TRS is back-propagated through all hidden
layers. Indeed, the fist hidden layer h(1) is an abstract repre-
sentation of the ASR input vector. Thus, the error learned in
the “clean” hidden space h(3) and back-propagated through the
bottleneck h(2) layer inset a residual noise in the “clean” hidden
spaces h(1) and h(2). However, both methods can not achieve
the performance obtained with the original clean corpus.

Table 3: Best theme classification accuracy (%) observed for
each set of features from ASR.

Method Feature Test
employed vector Accuracy

DDAE h(1) 69.4
DAE h 74.3

Term-frequency – 77.1
AEASR h 81

Proposed DSAE h(2) 82.0

The accuracy of the DSAE is of 82.0%, only 2.1 points un-
der the accuracy obtained with clean documents (TRS) as pre-
sented in Table 1. This shows that a very small percentage of re-
constructed feature vectors affect the classification performance
of the target manual transcription features. Finally, the rela-
tively low results (see Table 3) of DDAE, DAE methods show
that trying to remove both noises at the same time is a bad idea.
The conjugate noise in ASR documents is too complex to be di-
rectly removed. In the proposed DSAE, the first and last layers
capitalize on the capacity of each hidden layer to remove resid-
ual noise by abstracting input representations in robust hidden
spaces. Then, the mapping layer focuses on the more complex
noise. This process lets this deep stacked AE produce a cleaner
latent representation in the bottleneck hidden layer (h(2)). The
82% accuracy reported in Table 3 with bottleneck features com-
pares favorably with the 81.4% reported in (Morchid 2014) for
the best set of latent Dirichlet allocation (LDA) features selected
with the development set. While specific tuning is not required
for bottleneck features, the number of LDA hidden topics and
the hyper-parameter values substantially affect accuracy with
variations that are difficult to control.

7. Conclusion
This paper proposed an original document representation based
on bottleneck features from a deep stacked autoencoder (DSAE)
to address the difficult task of theme identification of automat-
ically transcribed documents. The initial assumption to learn
a deep autoencoder in homogeneous conditions (input/output
with ASR vectors) confirmed by these experiments, allows us
to better map documents into a latent reduced space, with a
gain of more than 1 point compared to a shallow autoencoder
with input/output from ASR. This is due to the small size of
the dataset and to the only first hidden layer of the autoencoder
that is enough to represent the relevant information. More-
over, the paper demonstrates that straightforward autoencoders
leaned in homogeneous conditions outperforms accuracies ob-
tained with denoising autoencoders learned with mismatched
data (ASR and TRS as input/output). A future work to continue
this preliminary study will be to take into account documents
structure by replacing feed-forward layer in the DSAE with re-
current layer to use the various properties of recurrent neural
networks such as Long-Short Term Memory (LSTM) autoen-
coders [32] or Gated Recurrent units [33].
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