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Abstract
Speech and audio codecs model the overall shape of the signal
spectrum using envelope models. In speech coding the predom-
inant approach is linear predictive coding, which offers high
coding efficiency at the cost of computational complexity and
a rigid systems design. Audio codecs are usually based on
scale factor bands, whose calculation and coding is simple, but
whose coding efficiency is lower than that of linear prediction.
In the current work we propose an entropy coding approach for
scale factor bands, with the objective of reaching the same cod-
ing efficiency as linear prediction, but simultaneously retain-
ing a low computational complexity. The proposed method is
based on quantizing the distribution of spectral mass using beta-
distributions. Our experiments show that the perceptual quality
achieved with the proposed method is similar to that of linear
predictive models with the same bit rate, while the design si-
multaneously allows variable bit-rate coding and can easily be
scaled to different sampling rates. The algorithmic complex-
ity of the proposed method is less than one third of traditional
multi-stage vector quantization of linear predictive envelopes.
Index Terms: spectral envelope, arithmetic coding, speech and
audio coding

1. Introduction
Modern speech and audio codecs, such as 3GPP Enhanced
Voice Services (EVS), MPEG-D Unified Speech and Audio
Coding (USAC), ITU-T G.718 and Extended Adaptive Multi-
Rate – Wideband (AMR-WB+) are generally hybrid codecs fea-
turing separate coding modes for speech signals and generic
audio signals [1–4]. While this separation into two modes
has well-motivated origins, the trend is to unify coding tools
to improve scalability and flexibility of the overall design.
Speech codecs have traditionally excelled at low bit-rates such
as 13 kb/s, but with increasing bit-rates their computational
complexity usually grows exponentially, and they are applicable
only on narrow- and wideband sampling rates, preventing flex-
ible and efficient application. Audio codecs on the other hand
are scalable in bit- and sampling-rate, but since their coding ef-
ficiency has been lower, their prime coding modes are usually
above 64 kb/s. Our goal is to develop scalable coding methods
which bridge over the intermediate bit-rates 20 kb/s to 60 kb/s.

A central task in development of scalable codecs are spec-
tral envelope models. Speech codecs are traditionally based
on linear predictive coding, which is essentially a polynomial
model of the spectral envelope [5,6]. There have been many im-
provements to the basic linear predictive model, such as [7–9],
but the basic approach for coding the parameters of linear pre-
dictive models, using vector codebooks and line spectral fre-
quencies, has remained fairly unchanged [10, 11]. This ap-

proach gives a relatively high coding efficiency, but finding the
line spectral frequencies and vector codebook searches are com-
putationally expensive operations, whereby they scale poorly to
higher bandwidths. Moreover, vector codebooks are generally
designed for a fixed bit-rate, whereby scaling across bit-rates is
also cumbersome. The latter problem can though be resolved by
using beta- or Dirichlet-distributions to encode the line spectra
instead of vector codebooks [12, 13].

Classic audio codecs do not explicitly encode the spec-
tral envelope, but only the perceptual envelope [14, 15], though
newer codecs can do both [4, 16]. The traditional approach for
encoding envelope shapes in audio codecs is to model envelope
magnitude in piece-wise constant steps, known as scale factor
bands. These factors are then differentially encoded with an en-
tropy coder. While this approach is simple to implement and
algorithmic complexity is low, the coding efficiency has been
clearly lower than for linear predictive envelopes.

In the current context, the most important application of
envelope models is spectral envelope modeling. However, en-
velope models are also used in other areas of speech and audio
coding. For example, temporal magnitude envelopes are often
encoded with linear predictive models [17] and the results of the
current study can be readily applied also there. Likewise, spa-
tial audio objects and scenes can also be described using scale
factors [18].

In this work we propose an entropy coder for scale fac-
tor bands based on modeling the distribution of spectral mass.
We have already shown that such envelopes can be efficiently
quantized by energy or magnitude distribution [19]. The central
contribution of the current work is to apply beta-distributions
in entropy coding of the scale factors. To be able to compare
the scale factor band -representation with linear prediction, we
further apply spline-smoothing on the scale factors. Since we
can thus avoid the computationally complex computation of line
spectral frequencies, our implementation is simpler than coders
using linear prediction [13]. Moreover, since our model is based
on a continuous, parametric probability model, it can be easily
adopted to any accuracy, whereby the method is scalable and
applicable to any speech and audio codec.

2. Distribution Quantization
Our objective is to develop an entropy coding method for en-
velopes, which explains as much as possible of the overall shape
of the signal. Furthermore, to keep the algorithmic complexity
of the method low, we want the parameters of the model to be
independent and orthogonal to each other to the greatest pos-
sible extent. Orthogonal parameters have the useful property
that they can be quantized and encoded independently, whereby
computationally complex vector quantization methods can be
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Figure 1: The p-norm ratios (p = 1) for the spectra of (a and c)
voiced and (b and d) unvoiced speech signals, on the two first
levels of the recursion. The first split point is here at 2 kHz and
the second-level split points are at 1 kHz and 4 kHz, as indicated
by the vertical lines. The mean level of each band is indicated
with a dashed horizontal line.

avoided [20].
An envelope is a smooth shape, like an oversampled sig-

nal. At the highest level of oversampling, only the tilt of the
envelope remains. It is therefore natural to use the tilt of the
envelope as the highest level descriptor. To measure that tilt, we
have chosen to use the ratio of p-norms of a signal x as

γ0 =
‖x1‖pp

‖x1‖pp + ‖x2‖pp
, where x =

[
x1
x2

]
, (1)

whereby γ0 ∈ [0, 1]. That is, we split the N × 1 vector x into
two parts, x1 and x2, each of length N1 and N2 = N − N1,
respectively.

The p-norm ratio applied on speech signals is illustrated in
Figure 1(a) and (b). We can see that a signal dominated by low-
frequency components have a p-norm ratio close to one γ → 1,
while high-frequency signals have a low value γ → 0.

We can then recursively split each sub-vector xk again into
sub-vectors x2k+1 and x2k+2 and determine their correspond-
ing p-norm ratio as

γk =
‖x2k+1‖pp

‖x2k+1‖pp + ‖x2k+2‖pp
. (2)

The p-norm ratio γ1 and γ2 for speech signals are illustrated in
Fig. 1(c) and (d). The recursion can then be continued to the
desired depth.

Conversely, given the sequence of p-norm ratios γk we
can determine the p-norm of each sub-vector ‖xk‖pp by solv-
ing Equation 2. For example, we can for k = 3 solve ‖x8‖pp =
‖x‖ppγ0γ1(1− γ3), whereby we see that the norm of each sub-
segment depends on the norm of the original vector and a prod-
uct of the ratios γk. In other words, the whole signal is split
up into segments, whose p-norm is known. This representation
is thus equivalent with the scale factor representation used in
audio coders. The final scale factor representation of a speech
signal is illustrated in Figure 2.

Finally, if we quantize the γk’s to γ̂k such that γk ≈ γ̂k,
then for the quantization we have, for example, ‖̂x8‖pp =
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Figure 2: Illustration of scale factors used to model the spec-
tral envelope. The relative level of each scale factor band can
be computed recursively from Eq. 2, whose solution gives the
product indicated in each scale factor band.

‖x‖ppγ̂0γ̂1(1 − γ̂3). It is immediately clear that γ0 has to be
quantized by the highest accuracy, since its accuracy has an im-
pact on all scale factors. The quantization of γ1 and γ2 then
have impact on only half the spectrum, whereby its accuracy
can be half that of γ0. We can thus have the accuracy of each
γk depend on the length Nk of the corresponding vector xk.
In the current work we have chosen to use a quantization ac-
curacy ∆γk which is proportional to the inverse of the vector
length ∆γk = εN−1

k , where ε is a scalar constant which de-
termines the overall quantization accuracy for the whole frame.
The quantization accuracy can be further improved by apply-
ing weighting on ∆γk based on perceptual criteria, for example
such that the accuracy of scale factors are relative to the ERB-
or Bark-scale.

3. Coding of p-Norm Ratios
The parameters γk give a unique description of the spectral en-
velope. Moreover, due to the recursive structure, each γk is
more or less independent of the other γk’s. This property can
be observed in Figure 1 as follows; First, note that x1 and x2
are non-overlapping, whereby γ1 and γ2 are independent. Fur-
thermore, since each γk is the normalized energy of the left sub-
vector, it follows that it is independent of the p-norm of its par-
ent. The p-norm ratios γk are thus uncorrelated with each other
and we can quantize and encode their values independently.

To encode γk’s efficiently, we next have to determine their
probability distribution. If we assume that x follows the mul-
tivariate normal distribution, then ‖x‖22 will follow the Chi-
squared distribution. Likewise, if x is Laplacian, then ‖x‖11
follows the Chi-squared distribution. Moreover, it is well-
known that the ratio A

A+B
follows the beta-distribution if the

two variablesA andB follow the Chi-squared distribution [21],
whereby γk’s will also follow the beta-distribution.

Plotting the histogram of γ0 in Figure 3 over a speech sig-
nal however reveals that the distribution has several peaks. In-
formal experiments have shown that the two main peaks corre-
spond to voiced and unvoiced phonemes. Moreover, transitions
and complex phonemes such as voiced fricatives can have a γ0
which lies in between the two peaks. Our interpretation of this
result is that each peak corresponds to a unique source, whereby
each source can be modelled with a beta distribution. We have
therefore chosen to use a beta mixture model to represent the
probability distributions of γk where each beta distribution in
the mixture model represents a class of phonemes i.e. voiced
or unvoiced. The parameters of such models can be estimated
using the methods in [12, 13].

The remaining step is to choose how to best split each vec-
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Figure 3: Histogram of γ0 over the NTT-AT database, as well
as beta mixture model (BMM) fitted to the data, where we used
a mixture of three beta probability distributions. The individual
beta pdf’s are indicated by dotted lines.

tor xk into its sub-parts x2k+1 and x2k+2, that is, how to de-
termine the length N2k+1 of vector x2k+1. The objective is to
choose this splitting points such that the corresponding p-norm
ratio γk then describes a maximal amount of the signal vari-
ance. Conversely, the best split is that where γk reaches highest
variance. Specifically, we will determine the variance of γk
for all possible split points N2k+1 ∈ (0, Nk) and choose the
highest-variance N∗

2k+1 = arg maxN2k+1 var[γk] as the best
split point. Starting from γ0 we can then recursively determine
all split points Nk.

Using the beta mixture models, we can then use arithmetic
coding to encode each parameter γk, to obtain near-optimal
coding efficiency of the envelope shape [22].

4. Experiments
To test the proposed entropy coding method of spectral en-
velopes, we used the CELP-portion of a proprietary imple-
mentation of the MPEG-H standard [23]. The objective is to
compare entropy coding of distribution quantization to conven-
tional linear predictive coding with vector quantization as used
in MPEG-H. To estimate the envelope parameters, we therefore
applied the same windowing function on the input signal as is
used when estimating the conventional predictor parameters.

For our experiments, we used the NTT-AT database, which
consists of 3941 male and female speech samples in American
and British English, German, Chinese, French and Japanese,
each of 2 s length [24]. The signals were resampled to 16 kHz
and down-mixed to mono. The window length was 32 ms with
50% overlap. The split points were chosen to maximize the
variance of the p-norm as described in section 2. To calculate
the variance, we used all sentences in the database except the
test set (described below). The value of 0.5 was chosen as the p
value in the Equation 2.

To use CELP, the spectral envelope needs to be converted to
a linear predictive filter. For that purpose, we created a smooth
envelope by spline interpolation using the same configuration
as in [19]. We then applied the inverse Fourier transform on
the power spectrum of the envelope to obtain an estimate of
the autocorrelation, and calculated an order m = 64 predictor
from that using Levinson-Durbin recursion [5, 25]. The pre-
dictor is naturally only approximating the estimated envelope,
whereby a comparison with the linear prediction can unfairly
penalize the proposed method. This configuration was how-
ever still retained, since it was the only one which we know of,
which allows direct comparison of the envelope coding meth-
ods. Since the approximation can only degrade the quality of
proposed method, it can not cause a false positive, where we

Figure 4: Average absolute MUSHRA scores for 15 speech
items with 10 listeners using 95% confidence intervals of Stu-
dent’s t-distribution.

Figure 5: Difference MUSHRA scores for 15 speech items
with 10 listeners using 95% confidence intervals of Student’s
t-distribution. The difference is computed with the LPC.

erroneously would conclude that the proposed method is bet-
ter than conventional linear prediction. To encode the p-norm
ratios using arithmetic coding, a simple beta probability distri-
bution was used.

The testing phase involved 15 files also from NTT
database [24] which were not included in the training phase.
These files were encoded and decoded using the MPEG-H en-
coder and decoder at a bit-rate of 24 kb/s. To evaluate the
proposed method for entropy coding, we measured the aver-
age bit consumption, conducted a subjective listening test using
MUSHRA [26] and performed an objective analysis of percep-
tual signal to noise ratio. Since we are comparing only the en-
velope models, all the three variants were constrained to use the
same CELP based core coder. The initial quantization level (i.e.
the quantization level with which the p-norm of the first split
point γ0 is quantized) for both variants of distribution quantiza-
tion were set to 100, which coincides with the number of bins
used in the LSF search [27].

The subjective listening test using MUSHRA consisted of
10 expert listeners and 15 speech items. The expert listeners
were asked to evaluate four conditions: hidden reference, con-
ventional linear prediction (LPC), distribution quantization with
16 split points (DQ16) and distribution quantization with 14
split points (DQ14). The results of the subjective listening test
were analyzed using Student’s t-distribution with 95% confi-
dence intervals.
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Figure 4 shows the average absolute MUSHRA scores. The
absolute scores for all the three conditions (LPC, DQ16 and
DQ14) lie in the ”good” and ”excellent” range except for speech
items s12, s10 and s7, for which the absolute scores for the con-
dition LPC lie in the ”fair” and ”good” range. Averaged over
all speech items, there is no significant statistical difference be-
tween the three conditions that were compared. The difference
MUSHRA scores is depicted in Figure 5. The difference is com-
puted with respect to the condition LPC. From this difference
figure, we can observe that LPC performs better than the two
versions of DQ for the speech items s2 and s11. However, for
speech items s4 and s12, the two versions of DQ perform better
than LPC. For 9 speech items, there is no statistical difference
between the three different conditions. For the speech item s6,
the condition DQ14 performs worse compared to LPC although
performance of DQ16 is same as LPC. For the speech item s3,
the condition DQ14 performs significantly better compared to
LPC although the performance of DQ16 is the same as that of
LPC. Averaged over all items, there is no statistically signifi-
cant difference between all the three conditions that were com-
pared. Hence, we can safely conclude that subjective quality of
the two variants of distribution quantization is as good as the
conventional linear prediction technique.

To gain further insight into the performance of the proposed
method, we performed the following objective measurements.
First, we determined the average bit consumption per frame
of the three conditions LPC, DQ16 and DQ14 as 44.98 bits,
43.58 bits and 40.86 bits respectively. Since the two variants of
the distribution quantization yield the same subjective quality
as the conventional linear prediction with almost the same bit
consumption, it can be concluded that distribution quantization
as an envelope modeling technique can replace linear predic-
tion as an envelope modeling technique. In addition, distribu-
tion quantization is computationally less complex compared to
conventional linear prediction as it does not involve computa-
tionally complex techniques such as estimation of line spectral
frequencies and vector quantization. In addition, distribution
quantization can be implemented, as here, as a variable bit rate
technique since the bit consumption is directly dependent on
the initial quantization level. Depending on the availability of
bits, the value of initial quantization level can be increased or
decreased. Distribution quantization can therefore also be im-
plemented as a fixed bit-rate codec using a rate-loop.

Second, we measured the perceptual SNR for the outputs
of each method. Figure 6 shows the comparison of percep-
tual signal to noise ratio for a 2.5 s segment of a speech signal.
We observe that the perceptual SNR for all the three conditions
are similar. During the speech phase, the perceptual SNR val-
ues for LPC tends to be slightly higher than both the variants
of distribution quantization. The mean perceptual SNR values
are 8.11 dB, 7.62 dB, 7.78 dB for LPC, D16 and DQ14 respec-
tively. Though the mean perceptual SNR of the conventional
linear prediction is better than the two variants of the distribu-
tion quantization, the difference is less than 0.4 dB. However,
since the MUSHRA test did not reveal a difference in percep-
tual quality between methods, we conclude that the difference
in perceptual SNR is either too small to be perceived or that the
measure itself is not an accurate measure of perceptual quality.
Linear prediction and the proposed method have, either way,
perceptually equivalent quality.

Finally, the complexity of the conventional linear prediction
is compared with that of our novel approach using the Big-O
notation. The complexity of DQ is O(N logN + QM) and
the complexity of LPC using multi-stage vector quantization is

Figure 6: Perceptual signal to noise ratio comparison for a 2.5 s
segment from the input file. The waveform corresponding to
the measurement is depicted at the top followed by the actual
measurement of perceptual SNR in dB.

O((
∑

k 2BkM) + Q logQ) where M is the model order, N is
the FFT length, Q is the number of quantization bins and Bk is
the bit consumption by the vector codebook at stage k. For a
typical set of constants (N = 256, Q = 100, M = 16, Bk =
{8, 8, 7, 7, 7, 7}), the proposed method thus has a complexity
of only one third of traditional linear predictive coding.

5. Conclusions
We have presented an entropy coder for envelope models, with
the objective of reaching the same coding efficiency and per-
ceptual quality as offered by linear predictive models, while
retaining the computational simplicity and flexibility of scale
factor bands. The proposed distribution quantization approach
is based on a recursive parametrization, where 1) the signal is
split into two segments, 2) the magnitude distribution of the two
segments is quantified with a ratio of their p-norms, and 3) the
sub-segments are recursively processed until the desired accu-
racy is reached. We have shown that the distribution of parame-
ters thus obtained follow a beta mixture model, which serves as
the basis of our entropy coder.

In comparison to linear prediction, the proposed
parametrization is computationally simple to determine,
since it does not require estimation of line spectral frequencies.
Moreover, since our parameters are approximately indepen-
dent, we can encode them separately, whereby computationally
complex vector quantizers can be avoided. It is thus clear that
the proposed parametrization has lower algorithmic complexity
than linear predictive coding. The approach is also flexible
since the design does not depend on the bit-rate, and allows
straightforward application of perceptual criteria in its design.
Furthermore, our experiments demonstrate that both the
objective and subjective quality of the proposed approach is
equivalent or better than linear predictive coding.

The proposed method for encoding spectral envelopes us-
ing entropy coding of the distribution quantization parameters is
therefore a competitive choice for encoding spectral envelopes
in speech and audio codecs. In addition, the same approach is
applicable for the coding of any other envelopes such as tempo-
ral magnitude envelopes or spatial sound fields.
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