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Abstract 
This paper proposes an approach to rapidly update a 
multilingual deep neural network (DNN) acoustic model for 
low-resource keyword search (KWS). We use submodular 
data selection to select a small amount of multilingual data 
which covers diverse acoustic conditions and is acoustically 
close to a low-resource target language. The selected 
multilingual data together with a small amount of the target 
language data are then used to rapidly update the readily 
available multilingual DNN. Moreover, the weighted cross-
entropy criterion is applied to update the multilingual DNN to 
obtain the acoustic model for the target language. To verify the 
proposed approach, experiments were conducted based on four 
speech corpora (including Cantonese, Pashto, Turkish, and 
Tagalog) provided by the IARPA Babel program and the 
OpenKWS14 Tamil corpus. The 3-hour very limited language 
pack (VLLP) of the Tamil corpus is considered as the target 
language, while the other four speech corpora are viewed as 
multilingual sources. Comparing with the traditional cross-
lingual transfer approach, the proposed approach achieved a 
19% relative improvement in actual term weighted value on 
the 15-hour evaluation set in the VLLP condition, when a 
word-based or word-morph mixed language model was used. 
Furthermore, the proposed approach was observed to have 
similar performance as the KWS system based on the acoustic 
model built using the target language and all multilingual data 
from scratch, but with shorter training time.  
Index Terms: cross-lingual knowledge transfer, multilingual 
deep neural network, keyword spotting, very limited language 
pack condition, submodular data selection  

1. Introduction 
Low-resource keyword search (KWS) has become a focus area 
for several research groups over the past years. The traditional 
ways to search for a keyword in a speech corpus include 
keyword-filler based approaches [1-2] and large vocabulary 
continuous speech recognition (LVCSR) based approaches [3-
8].  In this paper, we are interested in the LVCSR based 
approaches because they scale better when the number of 
search keywords increases. 

As an LVCSR based KWS system needs a well-trained 
ASR system, it is difficult to build such a system for a low-
resource language due to the insufficient quantity of 
transcribed speech data. To overcome such limitation, 
researchers proposed to use the transcribed data from other 
languages to build acoustic models or feature extractors which 
can then be applied to low-resource target languages [9-19]. 
To achieve this goal, cross-language knowledge transfer using 
multilingual deep neural networks (DNNs) with different 

training strategies [9,11,13,14,17,18] have been proposed. 
Another commonly used approach [10,12,15,16,19] is to 
extract bottleneck features using a multilingual DNN, which is 
trained using a large amount of transcribed data, and then train 
a GMM-HMM recognizer using the bottleneck features. A 
multilingual DNN trained by multiple source languages for 
bottleneck feature extraction or cross-lingual transfer carries 
rich information to distinguish phonetic classes in multiple 
source languages, and it can be adopted to distinguish phones 
in other target languages. Multilingual DNN based cross-
lingual transfer can be simple and time-efficient when a small 
amount of transcribed target language data is available. Its 
shared hidden layers remain unchanged and only the softmax 
layer is trained using the target language data [14].  

In the present work, we demonstrate that although the 
model obtained by cross-lingual transfer is time-efficient, the 
acoustic model trained using both the target and source 
language data outperforms the model obtained by cross-lingual 
transfer. We believe that the acoustic model that include both 
types of training data can capture more target language related 
phonetic information, especially when target language is from 
a language family different from the source languages. 
Unfortunately, the above mentioned approach has two issues: 
i) It  takes a longer time to estimate the parameters of the DNN 
due to the large amount of multilingual training data and the 
large-scale of parameters in the DNN; ii) Not all multilingual 
data contributes equally to the final KWS performance for the 
target language [9]. 

Motivated by the two issues, this work examines an 
efficient way to update the multilingual DNN for the target 
language, instead of training the multilingual DNN from 
scratch. We assume that the multilingual DNN is readily 
available before a new target language is identified. It is 
desirable to rapidly deploy a KWS system for the new target 
language when the amount of transcribed target language data 
is limited. 

To update the multilingual DNN for a new target 
language, we propose to use submodular data selection to 
select a subset of representative utterances from the 
multilingual data corpus. A selection metric is used to choose 
the utterances which are acoustically close to the target 
language. Representative utterances are defined as the 
utterances that cover diverse acoustic conditions. Submodular 
data selection has been shown successful in active learning for 
ASR and KWS [21-25], in which representative utterances 
from a language are selected for manual transcription. Note 
that multilingual data selection has been studied in [9] which 
used language identification to select the most similar 
language as the target language. However, our proposed 
approach considers data representativeness and it can select 
utterances from different language corpora. Furthermore, to 
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well re-estimate the parameters in the multilingual DNN 
model, we apply the weighed cross-entropy criterion to 
enhance the feedback error observed from the target language 
training data. 

To examine our proposed approach, the above acoustic 
model is evaluated on KWS using the Tamil speech in 
OpenKWS14. Because the rich morphological structure of 
Tamil, both word-based and word-morph mixed language 
models (LMs) are used in the KWS experiments. To our best 
knowledge, it is the first work to use submodular data 
selection to select multilingual data to conduct multilingual 
DNN update. The rest of the paper is organized as follows. 
The background of multilingual DNN training is introduced in 
Section 2. The shared-hidden-layer multilingual deep neural 
network (SHL-MDNN) update with a new target language is 
presented in Section 3. Multilingual data selection for SHL-
MDNN is introduced in Section 4. Experimental setup and 
results are presented in details in Section 5. Section 6 
concludes the paper. 

2. Background of multilingual DNN 
training 

There are several ways to train a multilingual DNN that uses a 
universal or language dependent phone set [9-19, 26]. The 
shared-hidden-layer multilingual deep neural network (SHL-
MDNN) [14] is one of the widely used approaches, in which 
the hidden layers are shared across many languages while the 
softmax layers are language dependent. The shared hidden 
layers (SHLs) extracted from the multilingual deep neural 
network can be viewed as a universal feature extraction 
module. As SHLs are trained using multiple source languages, 
they carry information for phonetic classification in the 
multiple source languages. When conducting cross-lingual 
transfer, the SHLs are extracted from the SHL-MDNN, and a 
new softmax layer is added on top of the SHLs. The output 
nodes in new softmax layer correspond to the senones created 
for the target language. Fixing the hidden layers, only the 
softmax layer is trained using the limited target language data. 
If sufficient training data is available, the entire network can 
be re-estimated for additional gains.  

3. SHL-MDNN update with new target 
language 

When adding a new language into the SHL-MDNN training 
for combining more rich phonetic information into modeling 
process, a simple approach is to train a SHL-MDNN from 
scratch using the new target language data and previous 
multilingual training data. It is undesirable to train a new SHL-
MDNN from scratch due to the following two reasons: (1) The 
existing SHL-MDNN model has embodied the previously 
available multilingual training data; and (2) It will take a long 
time to train a new SHL-MDNN due to the large amount of 
multilingual training data.  

The objective of combining the target language data and 
source language data is to build a better DNN model for the 
target language. In this paper, we propose to use the weighted 
cross-entropy criterion and a small amount of multilingual 
data to achieve this goal. We refer to this process as the SHL-
MDNN update with a new target language. The weighted 
cross-entropy criterion can be used to emphasize more on the 
new target language when conducting SHL-MDNN update. 

3.1. Weighted cross-entropy criterion for shared-
hidden-layer multilingual deep neural network 
The weighted cross-entropy criterion [27-29] used for SHL-
MDNN training can be formulated as follows: 

E = (1 − α) ∑ d�� logp����	
 + �
� ∑ ∑ d�()logp�()���	
�	
   (1) 

where p�� = ��������
∑ ���(���)�   is the probability of the target language 

output unit o��  for its input x�� . p�(�) = ������(�)�
∑ ������(�)��

 is the 

probability of the ith  source language output unit o�(�) for its 

input x�(�). d�� and d�() are target values, which are 1 when the 
input belongs to the jth state and are 0 otherwise. C is the 
number of source languages. M is the number of senones in the 
target language, and N  is the number of senones of the kth 
source language. α  is the weight. A higher target language 
related weight (1 − α) can be used to emphasize more on the 
target language (and emphasize less on the source languages). 

4. Multilingual data selection for SHL-
MDNN update 

Comparing with training an SHL-MDNN from scratch using 
all the speech data, it is more efficient to update the readily 
available SHL-MDNN using a small amount of selected 
multilingual training data and the training data of the new 
target language. The previous work [9] showed that not all 
multilingual data can contribute to modeling parameter 
estimation for the target language. Therefore, when selecting a 
small amount of multilingual training data for updating the 
SHL-MDNN, the selected data should not harm the target 
language related DNN model. In this paper, we propose to use 
submodular data selection to select a small amount of 
multilingual data, which is acoustically close to the target 
language data. 

4.1. Problem formulation 

Given a set of N  utterances V = {v
, v�, ⋯ , v�} , �: 2� → ℝ , 
returning a real value for any subset S ⊆ V, is a submodular 
function if it satisfies �(B ∪ {s}) − �(B) ≤ �(A ∪ {s}) − �(A) ∀A, B ⊆ V, A ⊆ B, s ∈ V\B . A function �  is monotone non-
decreasing if �(A ∪ {s}) − �(A) ≥ 0 , ∀s ∈ V\A, A ⊆ V . A 
function � is normalized if �(∅) = 0.  

For submodular subset selection problem, it can be 
formulated as follows: 

max.⊆�{�(S): c(S) ≤ K}                         (2) 
where c(S) ≤ K  is the constraint. In this paper, c(S)  is the 
number of hours of the utterances selected from the 
multilingual sources. Although the subset selection problem is 
NP hard, it can be approximately solved using a simple greedy 
forward selection algorithm. And the theorem in [30] 
guarantees that the solution obtained using the greedy forward 
selection algorithm is near-optimal. It is also the best we can 
do in polynomial time unless P = NP [31]. 

4.2. Data selection using feature based submodular 
function 
When conducting speech data selection for manual 
transcription, the feature based submodular data selection has 
been shown more efficient than other submodular data 
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selection [21-25], and to perform better results than other data 
selection approaches for ASR and KWS applications [23-25]. 
It does not require compute the pair-wise similarities between 
all the utterances when selecting utterances to form a 
suboptimal subset under the objective function optimization 
framework. 

  In this paper, we follow the submodular function 

�/�3456789;<�>4>?@5(S) = ∑ pDlog F∑ 

<(G)G∈. mD(s)HD∈I =

∑ pDlog�mD∗ (s)�D∈I  in [23] to select utterances from 
multilingual sources. {pD}  is the feature u ∈ U  distribution, 
and estimated from the development set [21, 22]. L(O) is the 
length of utterance s. QR(O) measures the degree of feature u 
of the utterance s, and  mD∗ (S) = ∑ 


<(G)G∈. mD(s) measures the 
average degree of feature u in the subset S normalized by the 
utterance length. The proposed submodular function considers 
the length normalization and also selects utterances which 
match the development set (the low-resource target language).  

Although some phonemes could be shared among different 
languages, different languages have their own phoneme sets in 
general. Hence, phonetic related features which are language 
dependent cannot be used in submodular multilingual data 
selection. Gaussian mixture model (GMM) is widely used to 
capture the acoustic characteristics of utterances in speaker 
recognition and spoken term detection [32-34]. In addition, in 
our previous works [21-23], GMM-based tokenization has 
shown as good performance as the phonetic representation. In 
this paper, the Gaussian component index is used to represent 
the utterances from different languages. The Gaussian 
component index sequence of each utterance is converted to a 
vector space representation with term frequency-inverse 
document frequency (TF-IDF) weighting. Based on TF-IDF, mD(s)  is computed according to equation  mD(s) =tf(u, s)idf(u), where s is an utterance in a subset S, tf(u, s) is 
the TF value for term u in utterance s, idf(u) is the IDF value 
for term u. The term u is 2-gram of Gaussian component index 
in this paper. The greedy forward selection is then used to 
select utterances under the submodular optimization 
framework. 

5. Experiments 

5.1. Experimental setup 
Four speech corpora (including Cantonese, Pashto, Turkish, 
and Tagalog) provided by the IARPA Babel program and the 
OpenKWS14 Tamil corpus were used in our KWS 
experiments. Each corpus contains both conversational speech 
and scripted speech. In the four Babel speech corpora, more 
than 100 hours of data are recorded in each full language pack 
(FLP), and each pronunciation lexicon only covers words 
appeared in the training transcription. When using the FLPs of 
the four languages to train a SHL-MDNN, both conversational 
and scripted speech were used. The very limited language 
pack (VLLP) of the Tamil corpus contains 3 hours of 
conversational telephone speech data, and its pronunciation 
lexicon only contains words that appear in the VLLP training 
transcription. The VLLP training transcription was used to 
train VLLP LMs, and the FLP training transcription was used 
to train FLP LMs in order to further verify our proposed 
approach. When using our proposed submodular data selection 
approach for updating the multilingual DNN, Tamil was 

viewed as the target language, and the other four languages 
were viewed as source languages.  

All of keyword search experiments were carried out with 
the publicly available Kaldi toolkit [35], and the DNN training 
was performed on a single NVIDIA Tesla K20 GPU. The 22-
dimensional fbank and 3-dimensional Kaldi pitch features 
were used to train the SHL-MDNN, and MFCC and Kaldi 
pitch features were extracted and used to train initial GMM-
HMMs. The multilingual alignments were obtained using the 
language-dependent GMM-HMMs by force alignment to the 
utterances in the corresponding language, and the senone 
labels from the alignments were used to train the SHL-
MDNN. Each source language dependent softmax layer 
contains about 4,500 senones. The target language softmax 
layer contains about 2,000 senones. The SHL-MDNN contains 
6 hidden layers, and each hidden layer contains 1,500 units. α 
in Equation (1) was set to 0.1 so that the DNN update 
emphasized more on the target language. 

 The 15 hours of evaluation part 1 Evalpart1 was used in 
our evaluation. The 10 hours of development set Dev10h was 
used to tune parameters. The evaluation keyword list provided 
by OpenKWS14 which contains 5,576 keywords or keyword 
phrases was used for evaluating keyword search systems. The 
actual term weighted value (ATWV) was used to measure the 
performance of keyword search [5]. 

5.2. Experimental results 

5.2.1. Word based KWS experimental results 
Table 1 shows the performance of different KWS systems 
when using the word-based VLLP LM and FLP LM for ASR 
decoding. Three hours of transcribed Tamil speech in FLP 
were used to train the acoustic models in these systems. 

Table 1. Performance of different KWS  systems on 
Evalpart1. Word-based VLLP LM and FLP LM used in ASR 

decoding. 

System Data 
Selection 

Training / 
Update 
Time 

ATWV 

VLLP FLP 

Monolingual N.A. 1 hours 0.1115 0.1494 
Cross-lingual transfer N.A. 3 hours 0.1250 0.1783 

New SHL-MDNN 
training N.A. 240 hours 0.1490 0.1998 

SHL-MDNN update with 
new target language Random 15 hours 0.1366 0.1840 

SHL-MDNN update with 
new target language Submodular 15 hours 0.1496 0.2027 

Without leveraging the multilingual data, the monolingual 
baseline system performed the worst as expected. The ATWV 
of this system on Dev10h is 0.0765 and 0.1317 when the 
word-based VLLP LM and FLP LM are used respectively. On 
Evalpart1, the baseline system achieves the ATWV of 0.1115 
and 0.1494 respectively.  

We implemented two baseline approaches which leverage 
the multilingual data in acoustic model training. One is the 
cross-lingual model transfer approach [14], in which we re-
estimated the top 3 layers (including the softmax layer) of the 
SHL-MDNN with the 3-hour transcribed Tamil speech. Its 
KWS performance is shown in the row labeled “Cross-lingual 
transfer” in Table 1. The other approach is to combine the 
transcribed Tamil data and all multilingual data to train a new 
SHL-MDNN from scratch. Its KWS performance is shown in 
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the row labeled “New SHL-MDNN training” in Table 1. 
Comparing with the cross-lingual model transfer approach, 
there are 19% and 12% relative ATWV improvements on 
Evalpart1. However, due to the large amount of multilingual 
data, it took a longer time to train the new SHL-MDNN model 
from scratch. 

To examine our proposed data selection approaches for 
SHL-MDNN update, we implemented two approaches to 
select 10% all of multilingual data. One is our proposed 
submodular data selection, and the other one is random data 
selection. The selected multilingual data together with the 
target language data was used to update the original SHL-
MDNN. The weighted cross-entropy criterion was also used to 
emphasize on the Tamil speech in the update. Table 1 shows 
the experimental results in the rows labeled “SHL-MDNN 
update with new target language”. Comparing with the cross-
lingual model transfer approach, our proposed approach 
achieves about 19% and 12% relative ATWV improvements 
on Evalpart1 when the VLLP LM and FLP LM are used in 
ASR decoding respectively. Comparing with the system using 
the SHL-MDNN updated with the randomly selected 
multilingual data, our proposed approach achieves 10% 
relative ATWV improvements on Evalart1 when the VLLP 
LM and FLP LM are used in ASR decoding.  

The model trained using our proposed approach has 
similar performance as the new SHL-MDNN model trained 
from scratch using the Tamil data and all multilingual data. 
However, our proposed approach is about 10 times faster than 
building the new SHL-MDNN from scratch as only 10% of 
multilingual data is used in our proposed approach. Another 
interesting finding from the experiments is that the 
multilingual data selected by our proposed approach does not 
contain Pashto data. The data proportion in our selected 
utterances for Cantonese, Turkish, and Tagalog is 21%, 32%, 
and 47% respectively. From the experiments, we can conclude 
that: (1) Not all multilingual data contributes to obtain a better 
model for the target language, and this is consistent with the 
observation in [9]; (2) Our proposed submodular data selection 
can select the multilingual data which is acoustically close to 
the target language data. 

The weighted cross-entropy criterion is also important to 
improve the performance of KWS for our proposed approach. 
When using the equal weight in the SHL-MDNN update, 
ATWV is 0.1201 on Evalpart1 when the VLLP LM is used, 
and it is similar to the system built by the cross-lingual model 
transfer approach. If the weight (α=0.1) is set to emphasize the 
target language, ATWV is 0.1496, which represents a 20% 
relative ATWV improvement.  

 

 
Fig. 1. Performance of KWS on Dev10h by tuning different 
numbers of hidden layers for cross-lingual model transfer. 

Word based  VLLP LM used in ASR decoding.  

In order to obtain better performance for the cross-lingual 
model transfer based KWS system, the cross-lingual DNN was 
tuned on Dev10h. Fig. 1 shows the KWS performance when 
different numbers of hidden layers are tuned in cross-lingual 
model transfer, and the word-based VLLP LM is used. In Fig. 
1, “1 Layer” means that only the softmax layer is trained using 
the target language training data. “2 Layers” means that the 
first hidden layer of the SHLs (from top to bottom) and the 
softmax layer are re-estimated using the target language 
training data. In Fig. 1, we find that cross-lingual model 
transfer can help to improve the performance of KWS, and 
there are about 7.3%~23.5% relative ATWV improvements on 
Dev10h. The best ATWV on Dev10h was obtained when re-
estimating “3 Layers” using the Tamil speech data. 
5.2.2. Word-morph mixed KWS experimental results 
Tamil is a morphologically rich language. The traditional 
word-based n-gram LM does not work well in this type of 
languages due to the huge number of different word forms. In 
the VLLP condition, the problem becomes even worse. 
Therefore, word-morph mixed language models and the 
corresponding word-morph mixed KWS systems were 
examined in our previous work [21]. Table 2 shows the 
performance of different KWS systems on Evalpart1 when the 
word-morph mixed VLLP LM and FLP LM are used. 

Table 2. Performance of different KWS systems on 
Evalpart1. Word-morph mixed VLLP LM and FLP LM used 

in ASR decoding. 

System Data 
Selection 

ATWV 
VLLP FLP 

Monolingual N.A. 0.1115 0.1570 
Cross-lingual transfer N.A. 0.1304 0.1910 
SHL-MDNN training N.A. 0.1536 0.2009 

SHL-MDNN update with new 
target language Random 0.1379 0.1913 

SHL-MDNN update with new 
target language Submodular 0.1554 0.2038 

By comparing Table 1 and Table 2, we can observe that 
the word-morph mixed LMs improve the performance of 
KWS. Using the word-morph mixed VLLP LM in ASR 
decoding, there are 0~4.3% relative ATWV improvements, 
and 0.5%~5.1% relative ATWV improvements are observed 
using the word-morph mixed FLP LM. 

6. Conclusions 
We propose a multilingual DNN update approach for low-
resource keyword search. Using submodular data selection, a 
small amount of multilingual data is selected, and the selected 
multilingual data together the target language data are used to 
update the multilingual DNN acoustic model. Our proposed 
data selection approach can select multilingual data which is 
acoustically close to the target language. We illustrate that 
when conducting the multilingual DNN update, the weighted 
cross-entropy criterion is important to the final KWS 
performance. No matter which type of LM is used, our 
proposed approach outperforms the new SHL-DNN model 
trained using the target language and all multilingual data from 
scratch, which is the best baseline leveraging the multilingual 
data. Moreover, our proposed method greatly reduces the time 
to obtain the acoustic model which is as good as the best 
multilingual baseline. In the future, we will apply our 
proposed approach to other languages. 
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