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Abstract
Most existing single-channel noise-suppression algorithms 
cannot improve speech intelligibility for normal-hearing 
listeners; however, the underlying reason for this performance 
deficit is still unclear. Given that various speech segments 
contain different perceptual contributions, the present work 
assesses whether the intelligibility of noisy speech can be 
improved when selectively suppressing its noise at high-level 
(vowel-dominated) or middle-level (containing vowel-
consonant transitions) segments by existing single-channel 
noise-suppression algorithms. The speech signal was 
corrupted by speech-spectrum shaped noise and two-talker 
babble masker, and its noisy high- or middle-level segments 
were replaced by their noise-suppressed versions processed by 
four types of existing single-channel noise-suppression
algorithms. Experimental results showed that performing 
segmental noise-suppression at high- or middle-level led to 
decreased intelligibility relative to noisy speech. This suggests
that the lack of intelligibility improvement by existing noise-
suppression algorithms is also present at segmental level, 
which may account for the deficit traditionally observed at 
full-sentence level.

Index Terms: Noise suppression, speech intelligibility,
segmental contribution.

1. Introduction

The objective of speech enhancement (or noise suppression) is 
to improve one or more perceptual aspects of noisy speech, 
most notably, quality and intelligibility [1]. However, 
improving speech quality might not necessarily lead to 
improvement in speech intelligibility. In fact, in many cases 
improvement in quality might be accompanied by a decrease 
in intelligibility [e.g., 2-3]; however, the underlying reason for 
being unable to improve intelligibility is still unclear.

When performing noise suppression, the present speech 
enhancement algorithms commonly lead to non-linear 
distortion contained in noise-suppressed speech (e.g., musical 
noise) [4-6]. Measuring the effect of non-linear distortion is a 
challenging task considering that many types of distortions 
exist due to the varieties of noise-suppression algorithms. An
earlier study by Kim and Loizou simplified the classification 
of non-linear distortions and classified the distortions into 

either amplification or attenuation distortion [4], where the 
amplification distortion and attenuation distortion referred to 
the scenarios that the envelope (or magnitude) spectrum of the 
noise-suppressed speech was larger and smaller, respectively,
than that of clean speech. They found that amplification 
distortion was practically harmful to speech intelligibility, and 
in contrast, attenuation distortion did not impair speech 
intelligibility [4]. This implies that, while amplification and 
attenuation distortions co-exist in noise-suppressed speech, 
they need to be treated differently for speech intelligibility 
prediction.

The above-mentioned lack of intelligibility improvement 
by noise-suppression processing was demonstrated at full-
sentence level. Many studies have found that various speech 
segments carry different amount of intelligibility information
[e.g., 7-10]. For instance, vowel-only speech (with consonants 
replaced by noise) is more intelligible than consonant-only 
speech (with vowels replaced by noise) [7-8]. When speech 
signal is segmented by the relative root-mean-square (RMS)-
level based segmentation, the high-level (H-level) and middle-
level (M-level) regions consists of segments at or above the 
overall RMS level of the whole utterance and segments 
ranging from the overall RMS level to 10 dB below (i.e., 
RMS–10 dB), respectively (see example in Fig. 1). For the 
most part, H-level segments include vowels and semivowels, 
while M-level segments include consonants and vowel-
consonant transitions [9]. Earlier studies have found that H-
and M-level segments carry different perceptual contributions 
for speech intelligibility [10].

Given the difference of perceptual contributions at 
segmental level, a question is raised: whether the present 
speech enhancement algorithms can improve the intelligibility
of segmentally noise-corrupted speech? In other words, if only 
the selected (H- or M-level) segments of noisy speech are
processed by noise suppression processing, would this lead to 
improved intelligibility relative to noisy speech (containing all 
noisy segments)? The answer to this question can improve our 
insights on the lack of intelligibility improvement at both full-
sentence and segmental levels. For instance, if there is 
intelligibility improvement when noisy speech is noise-
suppressed at segmental level, the intelligibility improvement 
deficit at full-sentence level may be attributed to the 
integration of distortion contained in different speech 
segments. The purpose of this study is to assess the segmental 
contribution to the intelligibility of noise-suppressed speech. 
More specifically, we will examine the perceptual 
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Figure 1. Example waveforms of (a) a sentence and (b) its relative RMS energy expressed in dB relative to the overall RMS 
level of the whole utterance. Dashed lines in (b) show the boundaries of the high-, and middle-RMS-level regions. The relative 
RMS threshold level(s) is 0 dB for the H-level segmentation, and [0, –10] dB for the M-level segmentation.

contributions of H-level (vowel-dominated) and M-level 
(containing vowel-consonant transitions) segments to the 
intelligibility of noise-suppressed speech.

2. Experiment

2.1. Subjects and materials
Ten (5 male and 5 female, aged 18 to 24 yrs) normal-hearing 
(NH) native Mandarin listeners participated in the experiment.
The sentence material consisted of sentences taken from the 
Mandarin Hearing in Noise Test (MHINT) database [11]. 
There were totally 24 lists in the MHINT corpus. Each 
MHINT list had 10 sentences, and each sentence contained 10 
keywords. All the sentences were produced by a male speaker, 
and their duration was around 2.8±0.3 second. A steady-state
speech-spectrum shaped noise (SSN) and a two male-voice (2-
talker) babble were used to corrupt the MHINT sentences at –
10 and –5 dB signal-to-noise ratio (SNR) levels, respectively.
The SNR levels were chosen to avoid the ceiling/floor effects.
Note that the SSN and 2-talker maskers were used in this 
experiment because they represented two different types of 
masking, i.e., steady-state and competing.

2.2. Signal processing
The noise-corrupted sentences were processed by four 
different speech enhancement algorithms, which included the 
generalized KLT approach [12], the Log Minimum Mean 
Square Error (logMMSE) algorithm[13], the multiband 
spectral-subtractive algorithm [14], and the Wiener algorithm 
based on a priori SNR estimation (Wiener) [15]. These four 
algorithms were selected because they covered the four most-
used types of single-channel speech enhancement methods 
(i.e., subspace approach, statistical-modeling approach, 
spectral-subtractive approach, and Wiener-filtering approach), 
and they represented the state-of-the-art noise-suppression
techniques. The parameters used in the implementation of 
these algorithms were the same as those published, and the 
Matlab code for the above speech enhancement algorithms 
was taken from [1].

Following the speech enhancement processing of the 
above four stimuli (i.e., KLT, logMMSE, MB and Wiener)
and the reference noisy stimuli, we synthesized two types of 
stimuli containing 1) enhanced speech at H-level segments
while the rest segments were noisy, and 2) enhanced speech at 
M-level segments while the rest segments were noisy. This 
study assessed six segmental processing conditions to the 
intelligibility of noise-corrupted speech. The condition of 
(full-sentence) noisy speech (noted as Noisy) gives the 
reference intelligibility score, and the condition of segmentally
clean speech (i.e., replacing noisy M- or H-level segments 
with their clean versions, noted as CLN) shows the best 
intelligibility score for noise-suppressed conditions. Four
additional conditions use noise-suppressed segments (i.e., by 
four noise-suppressed algorithms) to replace their 
corresponding noisy segments.

The relative RMS-level based segmentation is 
implemented by dividing speech into short-term (16-ms in this 
study) segments and classifying each segment into H- or M-
level regions according to its relative RMS intensity [4]. The 
threshold levels of 0 and –10 dB split speech into H-level and 
M-level, and these two threshold levels were selected as they 
were originally proposed in [9]. Note that the RMS-level 
segmentation is implemented on the clean speech signal in this 
study. Figure 1 shows an example sentence segmented into H-
level and M-level based on the above RMS threshold levels.

2.3. Procedure
The experiment was performed in a sound-proof room, and 
stimuli were played to listeners monaurally through a 
Sennheiser HD 250 Linear II circumaural head-phone at a 
comfortable listening level. Each subject participated in a total 
of 24 conditions [=2 maskers (i.e., SSN at –10 dB SNR and 2-
talker masker at –5 dB SNR) × 2 segmental noise-suppression 
conditions (i.e., H-level and M-level) × 6 signal processing 
conditions (i.e., Noisy, KLT, logMMSE, MB, Wiener, and 
CLN)]. Different sentence lists were presented to each listener 
for different test conditions. The order of the test conditions 
was randomized across subjects. Subjects were allowed to 
listen to the sentences 3 times at most, and were instructed to 
orally repeat all the words that they could recognize. The 
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Figure 2. Mean sentence intelligibility scores as a function of segmental condition at (a) SSN masker and –10 dB SNR, and (b) 
2-talker masker and –5 dB SNR. The error bars denote ±1 standard error of the mean. ‘~’, ‘<’ and ‘>’ denote that the 
intelligibility score of segmentally enhanced speech (by KLT, logMMSE, MB, Wiener or CLN) is non-significantly (p>0.05)
smaller/larger, significantly (p<0.05) smaller, and significantly (p<0.05) larger, respectively, than that of noisy speech at the 
same group of tested condition. ‘ns’, ‘s–’, and ‘s+’ mean that the intelligibility score of segmentally enhanced speech at H-level 
is non-significantly (p>0.05) smaller, significantly (p<0.05) smaller, and significantly (p<0.05) larger, respectively, than its 
paired test condition at M-level.

intelligibility score for each condition was computed as the 
ratio between the number of the correctly recognized words 
and the total number of words contained in each list of 10 
MHINT sentences.

3. Results

Figure 2 (a) shows the mean sentence recognition scores of all 
tested conditions when the interfering masker is SSN at –10 
dB SNR. Statistical significance was determined by using the 
percent recognition score as the dependent variable, and 
segmental condition (H-level and M-level) and noise-
suppression processing (Noisy, KLT, logMMSE, MB, Wiener 
and CLN) as the two within-subject factors. Two-way analysis 
of variance (ANOVA) with repeated measures indicated a
non-significant effect (F[1, 9]=3.496, p=0.094) of segmental 
condition, significant effect (F[5, 45]=62.282, p<0.001) of 
noise-suppression processing, and a significant interaction 
(F[5, 45]=12.483, p<0.001) between segmental condition and 
noise-suppression processing.

Post hoc pairwise comparisons at H-level condition
showed that the recognition score of CLN sentences was 
significantly larger than that of Noisy sentences; however, the 
scores of noise-suppressed sentences (by noise-suppression 
algorithms) were either non-significant (p>0.05) different 
from or significantly (p<0.05) smaller than that of Noisy 
sentences. This finding was also seen from the six conditions 
at M-level in Fig. 2 (a).

Post hoc pairwise comparisons at the same noise-
suppression processing showed that the paired scores at Noisy, 
logMMSE and Wiener conditions were non-significantly 
(p>0.05) different between H- and M-level conditions, the 
scores at MB or CLN and H-level condition was significantly 
(p<0.05) smaller its paired score at M-level condition, and the 
score at KLT and H-level condition was significantly (p<0.05) 
larger that its paired score at M-level condition.

Figure 2 (b) shows the mean sentence recognition scores 
of all conditions when the interfering masker is 2-talker babble 
at –5 dB SNR. Statistical significance was determined by 
using the percent recognition score as the dependent variable, 
and segmental condition and noise-suppression processing as 

the two within-subject factors. Two-way ANOVA with 
repeated measures indicated a significant effect (F[1, 
9]=66.233, p<0.001) of segmental condition, significant effect 
(F[5, 45]=110.429, p<0.001) of noise-suppression processing,
and a significant interaction (F[5, 45]=15.143, p<0.001)
between segmental condition and noise-suppression 
processing.

Post hoc pairwise comparisons at H-level condition 
showed that the recognition score of CLN sentences was 
significantly larger than that of Noisy sentences; however, the 
scores of noise-suppressed sentences (by noise-suppression 
algorithms) were all significantly (p<0.05) smaller than that of 
Noisy sentences. This finding was also seen from the six 
conditions at M-level in Fig. 2 (b). That is, the recognition 
score of CLN sentences was significantly larger than that of 
Noisy sentences; however, the scores of noise-suppressed 
sentences (by noise-suppression algorithms) were all 
significantly (p<0.05) smaller than that of Noisy sentences.

Post hoc pairwise comparisons at the same noise-
suppression processing showed that the paired score at 
logMMSE condition was non-significantly (p>0.05) different 
between H- and M-level conditions, the scores at all other five 
conditions were significantly (p<0.05) smaller their paired 
scores at M-level condition.

4. Discussion and conclusions

While many earlier studies found that existing single-channel 
speech enhancement algorithms could not improve or even 
deteriorate the intelligibility of noise-corrupted speech at full-
sentence level by NH listeners, the present work further found 
that they could not lead to intelligibility improvement at 
segmental level. When only H- or M-level segments were 
processed by noise suppression algorithms, the intelligibility 
score of stimuli containing noise-suppressed H- or M-level 
segments (while the other segments remained noisy) was not 
larger than that of noisy speech (i.e., with all noisy segments).
However, when the H- or M-level segments were replaced by 
their clean versions, Fig. 2 shows that the intelligibility score 
could be significantly improved relative to that of noisy 
speech. This indicates that at the presence of noise corruption,
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speech intelligibility could be improved even when only 
selectively performing noise-suppression at selected H- or M-
level segments. However, as mentioned earlier, noise-
suppression processing is marked with extra distortion which 
is detrimental for speech intelligibility [e.g., 4]. The present 
work showed that the distortion was equally distributed at H-
level and M-level. That is, the distortion at either H- or M-
level is harmful to the intelligibility of segmentally noise-
suppressed speech, yielding a decreased intelligibility score 
relative to noisy speech.

Most (if not all) noise-suppression algorithms involve a 
gain reduction stage, in which the mixture envelope or 
spectrum is multiplied by a non-linear gain function (i.e., 
taking values from 0 to 1) with the intent of suppressing 
background noise [1]. The shape and choice of the gain 
function varies across algorithms, but independent of its shape, 
when the gain function is applied to the mixture envelopes (or 
spectra), it introduces distortion to the envelopes (or spectra).
The gain function is normally influenced by the SNR level, 
and a low SNR level may severely affect the accuracy of gain 
function estimation. This study assessed the effect of two 
level-dependent speech segments, i.e., H-level and M-level, 
for improving the intelligibility of noise-suppressed speech. 
The H-level region consists of segments at or above the 
overall RMS level of the whole utterance, while the M-level 
region consists of segments ranging from the overall RMS 
level to 10 dB below (i.e., RMS–10 dB). Hence, the intensity 
of speech segment at H-level is larger than that at M-level, or 
the local SNR level at H-level may be larger than that at M-
level. This would lead to the assumption that H-level segments 
may contain less distortion (due to its relatively accurate SNR 
estimation) than M-level segments. However, as seen in Fig. 2, 
the present work showed that H-level noise-suppressed speech 
did not always lead to better intelligibility performance than 
its M-level counterpart. This suggests that the effect of 
distortion (i.e., caused by noise-suppression) to speech 
intelligibility is not affected the segmental level. Though H-
level and M-level contain speech segments with different 
levels, there is no H-level advantage to reduce the detrimental 
effect of distortion to intelligibility. Instead, it is interesting to 
see that, at 2-talker babble condition in Fig. 2 (b), the 
distortion from noise-suppression at M-level yielded a much 
higher intelligibility score than that at H-level.

Earlier work showed that M-level segments, which 
contained more vowel-consonant transitions, carried important 
perceptual information for speech intelligibility in noise [e.g., 
10]. The present study also demonstrated this M-level 
advantage for speech recognition. Figure 2 (b) shows that the 
intelligibility score of M-level enhanced speech is 
significantly (p<0.05) larger than its paired score of H-level 
enhanced speech, except at logMMSE condition where the 
difference of two scores at M-level and H-level is non-
significant [noted at ‘ns’ in Fig. 2 (b)]. The same finding is 
seen in Fig. 2 (a) where speech signal was corrupted by SSN 
masker at –10 dB SNR. The mean scores of most M-level 
enhanced conditions are significantly (p<0.05) or non-
significant larger than their paired scores of H-level enhanced 
conditions, with exception of KLT condition. Hence, these 
results suggest that M-level might carry more perceptional 
importance for speech enhancement processing.

In conclusion, the present work assessed the segmental 
contribution of noise suppression for improving speech 
intelligibility. When only H- or M-level segments of noise-
corrupted speech were processed by existing single-channel 
speech enhancement algorithms and the other segments were 
corrupted by noise, the intelligibility of segmentally noise-

suppressed speech was not improved relative to the noisy 
speech containing all noisy segments. Taking findings from 
earlier work, this study showed that single-channel speech 
enhancement algorithms may not improve the intelligibility of 
noise-corrupted sentences at both full-sentence and segmental 
levels. Future work can design algorithms aiming to diminish
the distortion at segmental level according to the acoustic 
difference and perceptual importance of various speech 
segments.
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