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Abstract
A central part of speech and audio codecs are their perceptual
models, which describe the relative perceptual importance of er-
rors in different elements of the signal representation. In prac-
tice, the perceptual models consists of signal-dependent weight-
ing factors which are used in quantization of each element.
For optimal performance, we would like to use the same per-
ceptual model at the decoder. While the perceptual model is
signal-dependent, however, it is not known in advance at the
decoder, whereby audio codecs generally transmit this model
explicitly, at the cost of increased bit-consumption. In this work
we present an alternative method which recovers the perceptual
model at the decoder from the transmitted signal without any
side-information. The approach will be especially useful in dis-
tributed sensor-networks and the Internet of things, where the
added cost on bit-consumption from transmitting a perceptual
model increases with the number of sensors.
Index Terms: speech analysis, auditory perception, envelope
modelling, internet of things, distributed sensor networks

1. Introduction
The era of Internet of Things (IoT) is approaching, whereby
the next generation of speech and audio coders should embrace
it. The design goals of IoT-systems however fit poorly with
the classic design of speech and audio coders, whereby a larger
redesign of the coders is required. Primarily, whereas state-of-
the-art speech and audio coder such as AMR-WB, EVS, USAC
and AAC consist of intelligent and complex encoders and rel-
atively simple decoders [1, 2, 3, 4], since IoT should support
distributed low-complexity sensor-nodes, we would like the en-
coders to be simple. Secondly, since sensor-nodes are in en-
coding the same source signal, application of the same quan-
tization at each sensor-node would represent over-coding and
potentially a serious loss in efficiency. Especially, since the per-
ceptual model should be more or less the same at every node,
transmitting it from every node is almost pure over-coding.

Conventional speech and audio coding methods consist of
three parts; i) a perceptual model which specifies the relative
impact of errors in different parameters of the codec, ii) a source
model which describes the range and likelihood of different in-
puts and iii) an entropy coder which utilizes the source model
to minimize perceptual distortion [5]. Further, the perceptual
model can be applied in either of two ways: i) Signal parameters
can be weighted according to the perceptual model, such that all
parameters can then be quantized with the same accuracy. The
perceptual model must then be transmitted to the decoder such
that the weighting can be undone. ii) The perceptual model
can alternatively be applied as an evaluation model, such that
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the synthesis output of different quantizations are compared,
weighted by the perceptual model, in an analysis-by-synthesis
iteration. Though here we do not need to transmit the percep-
tual model, this approach has the disadvantage that quantization
cells shapes are not regularly shaped which reduces coding ef-
ficiency. More importantly, however, to find the optimal quan-
tization, we must use a computationally complex brute-force
search of different quantizations.

Since the analysis-by-synthesis approach thus leads to a
computationally complex encoder, it is not a viable alternative
for IoT. We must therefore device a method which has access
to the perceptual model also at the decoder. However, as noted
above, explicit transmission of the perceptual model (or equiv-
alently, an envelope model of the signal spectrum), is not desir-
able because it lowers coding efficiency.

The proposed approach consists of two parts; distributed
quantization of the input signal using random projections and
1 bit quantization similar to [6], and implicit transmission of
the perceptual model. By quantization of random projections,
we make sure that each transmitted bit encodes a unique piece
of information and we thus avoid over-coding. The perceptual
model is generated independently at each sensor-node and we
transmit the quantized perceptually weighted signal. Note that
perceptual weighting makes the signal more flat, but that the ba-
sic shape is retained. We can therefore inversely deduce what
the original envelope must have been, even from the perceptu-
ally weighted signal.

Though distributed source coding is a well-studied subject
(e.g. [7, 8]) and it has been applied in other applications such
as video [9], only a few a have worked on distributed audio
coding (e.g. [10, 11, 12, 13]), and none of them however ad-
dress the over-coding problem with respect to perceptual and
envelope models. The scalable coding approach in [14] comes
the closest, but even that model includes envelope coding with
scale factors. The multiple description coding approach does
also have some similarities, but instead of distributed coding it
has been applied only to packet loss concealment [15, 16].

2. Distributed Source Coding
The main topic of the current paper is perceptual modelling in a
distributed coding system. However, for practical experiments
we need to apply quantization of the signal. The topic of dis-
tributed source coding is well-understood [7, 8], whereby we
will here not dwell deeply into its theory. Instead, we apply
a simple quantization scheme inspired by the 1 bit quantiza-
tion method which has been used in compressive sensing sys-
tems [6]. This approach provides a realistic platform where we
can study the main focus of this paper, that is, perceptual mod-
elling in a distributed system. A more detailed discussion of
quantization is thus left for further study.

The objective of the quantizer is to allow quantization at
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Figure 1: Flow-diagram of proposed distributed audio coding
system, excluding perceptual modelling.

independent sensors, such that we can ensure that each trans-
mitted bit improves quality, without communication between
sensor-nodes. In the extreme, we could have a sensor send only
one bit and still be able to use that single bit to improve quality.

The proposed quantization scheme is based on random pro-
jections of a real-valued representation of the signal spectrum
and transmitting the sign of each dimension. In other words, let
x be the real-valued N×1 vector containing the spectrum of the
input signal, and P a K×N random matrix whose columns are
normalized to unit length. We will then transform x by u = Px
and quantize the sign of each component of u, that is, the quan-
tization is û = sign(u), which can be transmitted losslessly
with K bits. The reconstruction, an approximation of x can
readily calculated by

x̂ = P †û = P † sign(Px), (1)

where P † is the pseudo-inverse of P . As long as the seed for
the pseudo-random columns of P is known at the decoder, the
decoder can thus decode the signal from û only. In the case of
multiple sensor-nodes, the input signal x is assumed to be the
same or noisy versions of the same signal, but each sensor has
its own random matrix Pk. At the decoder the random matri-
ces can be collated to a single large matrix P = [P1, P2 . . . ]
whereby Eq. 1 remains unchanged.

It is well-known that if K � N , then P is approximately
orthonormal, PTP ≈ I and the quantization is near-optimal.
In our case K is not necessarily smaller than N , whereby the
orthonormality becomes less accurate. Using the transpose in-
stead of the pseudo-inverse decreases algorithmic complexity
and coding efficiency, but does not impose a limitation to our
experiments on perceptual modelling, since every transmitted
bit still improves the accuracy of the output signal.

We expect that a source model would then be applied on
the decoder side and that such a model would increase the ac-
curacy of the reconstruction. Since our focus is on perceptual
modelling, it is however not necessary to implement a source
model, since its effect can be simulated by increasing the accu-
racy by sending more bits.

The flow-diagram of the overall system (excluding percep-
tual model) is illustrated in Fig. 1.

3. Perceptual Modelling
Speech and audio codecs are based on efficient modelling of
human auditory perception. The objective is to obtain such a
weighting of quantization errors that optimization of the signal-
to-noise ratio in the weighted domain gives the perceptually best
possible quality. Audio codecs operate generally in the spec-
tral domain, where the spectrum of an input frame s can be
perceptually weighted with a diagonal matrix W such that the
weighted spectrum x = Ws can be quantized x̂ = bWse,
where b·e denotes quantization. At the decoder, we can recon-
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Figure 2: Flow-diagram of the kth sensor-node with perceptual
weighting as well as the corresponding decoder.

struct the spectrum with the inverse operation ŝ = W−1x̂. The
flow-diagram of perceptual quantization is depicted in Fig. 2.

Specifically, the perceptual weighting model consists of
two parts; i) A fixed part corresponding to the limits of per-
ception at different frequency bands. Perceptual models such as
Bark- and ERB-scales model the density of frequencies such
that the warped axis has uniform perceptual accuracy [17].
However, since our objective is to measure error energy on the
warped scale, we can equivalently scale the magnitude of spec-
tral components such that the computationally complex warping
operation can be avoided [18]. This operation is also similar to
the pre-emphasis operation applied in speech codecs [1, 2, 3].
Since this part of the weighting is fixed, it does not need to be
explicitly transmitted, we can apply it at the encoder and di-
rectly reverse it at the decoder.

ii) The signal-adaptive part of the perceptual model cor-
responds to the frequency-masking properties of perception.
Namely, high-energy components of the signal will mask lower
energy components and thus render them inaudible, if the
two are sufficiently close in frequency [5]. The shape of the
frequency-masking curve is thus equal to the shape of the sig-
nal envelope, but with a smaller magnitude.

If |x| is the magnitude spectrum of the input signal, we can
obtain its spectral envelope by y = AΛAT |x|, where matrix A
is a filterbank such as in Fig. 3(a). In difference to the common
MFCC-type filterbanks [19], we use asymmetric Hann-window
type windows with an overlap extending from the kth filter to
the k − 2 and k + 2 filters (see Fig. 3(a)). The diagonal matrix
Λ contains normalization factors for each band such that we ob-
tain unit-gain. We can here use a Mel-, Bark- or ERB-scale as
desired and with a suitable number of bands. At a sampling
rate of 12.8 kHz, we used a Mel-filterbank with 20 bands. An
alternative to the MFCC-type filterbank matrix would be to use
spreading by filtering, whereby A becomes a convolution ma-
trix. Since filtering operations are well-understood digital signal
processing methods, we can readily find their inverses as well.

The perceptual weighting factors model the frequency
masking effect, which in turn corresponds to spreading and scal-
ing of energy over frequencies [20, 5]. The envelope model ma-
trix A already achieves the effect of spreading, whereby we still
need to model scaling of energy.

The energy scaling corresponds to compression of the sig-
nal, which reduces the magnitude-range of the envelope (see
Fig. 3(b)). Hence, if we multiply the spectrum s with the per-
ceptual weighting matrix W , we obtain a spectrum x = Ws
which has a reduced range (see Fig. 3(c)). Perceptual weighting
thus reduces the range or flattens the spectrum, but it does not
produce a spectrum with an entirely flat envelope. The range of
the envelope is reduced, whereby a part of its range is retained,
and we can use that remaining range to recover the original sig-
nal following the expanded envelope.

2484



0 2 4 6 8 10 12

M
ag

n
it

u
d
e

0

0.5

1
(a)

0 2 4 6 8 10 12

M
ag

n
it

u
d
e 

(d
B

)

-50

0
(b)

Signal s

Envelop y

Perceptual w

Frequency (kHz)

0 2 4 6 8 10 12

M
ag

n
it

u
d
e 

(d
B

)

-50

0
(c)

PercSignal Ws

PercEnv Wy

Figure 3: Illustration of (a) the columns of a filterbank matrix A
on the Mel-scale with 20 bands, (b) the spectrum of a signal s,
its envelope y and corresponding perceptual model w, and (c)
the perceptually weighted spectrum Ws and the corresponding
weighted signal envelope Wy.

The range-reduction or compression function w = f(y)
for the envelope y (where vector w gives the diagonal elements
of W ), can be applied for example as a sample-wise exponent
f(y) = yp with 0 < p < 1. While it is possible to use any
function which compresses the range of y, exponentiation has
the benefit that it leads to simple analytic expression in envelope
reconstruction at the decoder.

The encoder algorithm is then:
1. Calculate the envelope of the magnitude spectrum.
2. Compress the envelope to obtain the perceptual weight-

ing model.
3. Apply weighting on spectrum x = Ws.
4. Quantize and transmit weighted spectrum sign(Px).

This algorithm is applied independently at every sensor-node.

4. Reconstruction of the Perceptual Model
At the decoder side, we can recover an estimate x̂ of the percep-
tual signal x (see Eq. 1) by x̂ = P † sign(Px). The main task
is thus to recover an estimate ŝ of the original signal s from the
quantized perceptual signal x̂. We know that x = Ws whereby
x̂ ≈ x = Ws ≈ Wŝ, furthermore, w = f(s) and W depends
on w. Therefore, if we have an estimate of w, we can estimate
ŝ, whereby we can estimate w, and iterate until convergence.
This is thus an Expectation Maximization -type algorithm.

Formally, we have the algorithm:
1. Get an initial guess of w0 by, for example, w0 =

AΛAT x̂ and set W0 appropriately.
2. Repeat from k = 0 until converged

(a) Calculate ŝk = W−1
k x̂

(b) Calculate wk+1 = f(ŝk) and set Wk+1 appropri-
ately.

(c) Increase k.

The last values ŝk and Wk are our final estimates of ŝ and Ŵ .
Typically, less than 20 iterations are required for convergence.
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Figure 4: A speech wave-file and the perceptual SNR of the
proposed quantization using 3 kbits/frame, with the oracle per-
ceptual model, the blindly estimated perceptual model and as a
reference, quantization without a perceptual model.

5. Experiments
To evaluate the performance of each part of the proposed sys-
tem, we performed the following experiments. We compared
three versions of the input audio; the quantized and recon-
structed signal, 1) without and 2) with perceptual modelling
such that the perceptual is known at the decoder, as well as
3) the perceptually quantized signal where the reconstruction
is performed with the blindly estimated perceptual model.

As test material we used random speech samples from
the NTT-AT dataset [21]. The input signals were resampled
to 12.8 kHz, the STFT was implemented with discrete cosine
transform to obtain a real-valued spectrum and we used an
envelope model with 20 bands, distributed according to the
Mel-scale [20, 5]. As a first approximation of the perceptual
model, we used the range-reduction function of f(y) = yp

with p = 0.5. This perceptual model was chosen merely as
a way to demonstrate the performance of blind reconstruction,
and should not be considered as a tuned end-product. The per-
formance of the envelope model as well as the perceptual model
were already illustrated in Fig. 3.

First, we will estimate the perceptual SNR for the quanti-
zation proposed without (SNRO) and with blind reconstruction
(SNRB) of the perceptual model, respectively,

SNRO =
‖x‖
‖x− x̂‖ , and SNRB =

‖x‖
‖x−WŴ−1x̂‖

. (2)

Figure 4 illustrates the perceptual SNR for a speech file quan-
tized with the different methods (K = 3000). It is clear that
when the perceptual model is known (oracle approach), the
SNR is close to 8.4 dB. Blind reconstruction of the perceptual
model clearly decreases quality (Blind) especially for voiced
phonemes. However, the SNR of the system without a percep-
tual model (No perc) is more than twice worse than with blind
recovery.

To further quantify the advantage of blind reconstruction
instead of no perceptual modelling, we measured the mean
SNR with different bit-rates K (see Fig. 5). The blind recov-
ery and no-perceptual-model approaches are on average 1.1 dB
and 5.8 dB worse than the oracle approach. Clearly SNR im-
proves with bit-rate, though the no-perceptual-model case im-
proves slower than with a perceptual model. Moreover, with
increasing SNR, the blind recovery approaches the quality of
the oracle approach asymptotically.
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Figure 5: Performance of blind reconstruction of perceptual
model as a function of the quantization SNR (solid line), in
comparison to quantization without perceptual model (dashed
line) and original perceptual model (dash-dot line). Vertical dot-
ted lines indicate the number of bits per frame used.

Finally, to evaluate subjective quality, we performed a
MUSHRA listening test with 8 listeners and 6 randomly chosen
items from the NTT-AT dataset. The signal was quantized with
3 kbits/frame, which is a relatively low number given that we
do not use any source modelling, whereby output SNR is also
relatively low. This scenario was chosen to demonstrate a prob-
lematic condition and performance is expected to improve sig-
nificantly at higher bit-rates as well as when applying a source
model. From the differential MUSHRA scores in Fig. 6, we
can see that for all items, perceptual modelling improves qual-
ity with both the oracle and blind estimation, by 29.9 and 22.3
points on average respectively. The statistical significance of the
differences were confirmed with Student’s t-test at p > 99%.

6. Discussion
The proposed 1 bit quantization and coding scheme has several
interesting consequences and properties. First, for analyzing
quantization properties, note that each column of P is a projec-
tion to a 1-dimensional sub-space of the N -dimensional space
of vector x. By encoding the sign of one projection, we thus
split the N -dimensional space into two parts. By repeatedly en-
coding signs of Px, we thus keep splitting the N -dimensional
space into ever smaller quantization cells. Since P is a random
matrix, its columns are approximately orthogonal to each other,
whereby the quantization cells remain near-optimal.

In a single node-system we could naturally design quan-
tization approaches which are more efficient. However, in a
distributed system it is more complicated – we need a simple
method to prevent nodes from encoding the same information,
that is, we need to avoid over-coding while retaining a low al-
gorithmic complexity. The proposed quantization is most likely
not an optimal quantization, but it is very simple and provides
near-optimal performance.

Secondly, observe that we have not, in this preliminary
study, employed source coding methods due to space limita-
tions. It is however well-known that such modelling can be used
to improve coding efficiency significantly. Source modelling
can be applied at the decoder side by modelling the probabil-
ity distribution of speech and audio signals (e.g. [22]). Source
modelling is possible, since we can treat the quantized signal as
a noisy observation of the “true” signal, whereby, by applying
a prior distribution of the source, we can apply maximum like-
lihood optimization (or similar) to approximate the “true” sig-
nal. Since this optimization is applied in the network or at the
decoder, the computational load is kept away from the sensor-
nodes and the sensor-nodes can remain low-power.
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Figure 6: Box-plot of the differential MUSHRA scores of a sub-
jective listening test, with oracle and blind perceptual modelling
compared to no perceptual modelling. Positive values indicate
improvement over no perceptual model.

Thirdly, from a privacy perspective, the random projection
method can be designed to be a highly efficient encryption. If
an eavesdropper does not know the seed for the random ma-
trix, then the data will seem entirely random and meaningless.
Assuming that the random seed is communicated in a secure
manner, then only the encoder and the intended receiver can
decrypt a message. This approach is in contrast to approaches
such as [12, 13], where communication between nodes is inten-
tionally employed. While such collaboration between nodes can
be used to improve perceptual SNR, privacy is more difficult to
guarantee. Even when assuming that sensor-nodes are operating
over a secure network, it can take only one compromised node
to gain access to all communications. In the proposed approach,
in contrast, if an eavesdropper gains access to one sensor node,
it compromises the data of that node only, since nodes can and
should use different seeds. To limit the transmission power of
sensor nodes, we can however allow that nodes relay packets,
since packets remain readable by the intended recipient only
and privacy is thus not compromised.

7. Conclusions
We have proposed a method for distributed audio coding, and
provided a proof-of-concept for a mandatory part of that codec,
the blind reconstruction of its perceptual model at the decoder
side. The method is based on a 1 bit quantization idea, where
on the encoder side, the perceptually weighted input signal is
projected to random sub-spaces, and where the sign of each di-
mension is then transmitted. The decoder can invert the quanti-
zation with a pseudo-inverse, or similar, to obtain the quantized
perceptually weighted signal.

The main part of the proposed method is then reconstruc-
tion of an estimate of the original signal, when we have access
only to the perceptually weighted signal. The approach is based
on an estimation-maximization (EM) algorithm, where we iter-
atively alternate between estimating the perceptual model and
the original signal.

Our experiments demonstrate that 1) the 1 bit quantizer
works as expected, 2) an approximation of the perceptual enve-
lope can be blindly reconstructed with an average loss of 1.1 dB
in perceptual SNR and approximately 7.6 MUSHRA points in
comparison to an oracle.

The proposed distributed speech and audio coding algo-
rithm is thus a viable approach for applications for the inter-
net of things. It offers scalable performance for any number of
sensor nodes and level of power consumption. Moreover, the
algorithm is secure by design, since privacy of the communica-
tion channel can be guaranteed by encrypted communication of
the random seed.
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