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Abstract
The deterioration of speech intelligibility in the presence of
other sound sources has been explained in terms of both ener-
getic masking, which renders parts of the speech signal inaudi-
ble, and informational masking, in which audible components
of the masker interfere with speech identification. The current
study focuses on the role of a specific form of informational
masking in which audible glimpses of both target and masker
combine to produce an incorrect listener percept. We examine a
corpus of word misperceptions in Spanish which occur when
target words are combined with a babble masker. Glimpses
originating in both the target and the masker are force-aligned
to the reported misperceived word in order to identify the most
likely acoustic evidential basis for the confusion. In this way,
the degree of involvement of both target and masker can be
quantified. In nearly all cases, the best explanation for the mis-
perception involves recruiting evidence from the babble masker
(type I error), and in more than 80% of the tokens some of the
audible target evidence is ignored (type II error). These findings
suggest misallocation of acoustic-phonetic material plays a sig-
nificant role in the generation of speech-in-babble confusions.

Index Terms: informational masking, misperception

1. Introduction
Speech is almost always accompanied by extraneous sound
sources, rendering its interpretation a non-trivial task. The chal-
lenge is greater still when the interfering signal is similar to the
target, as in the case of competing speakers. The difficulties
listeners face stemming from masker interference are two-fold.
First, target speech cues can be occluded by more energetic por-
tions of the masker, leaving the listener with incomplete target
evidence, a phenomenon known as energetic masking. Second,
listeners have to segregate those target components that survive
energetic masking from a multitude of potentially similar acous-
tic fragments and integrate them into a coherent percept in or-
der to interpret the intended message. This allocation problem
can constitute a major component of non-energetic i.e., infor-
mational masking [1, 2, 3].

As a first step towards understanding the contribution of
misallocation to informational masking, the aim of the cur-
rent study is to measure the degree to which information from
a speech-based masker is integrated into the reported percept,
and the extent to which information from the target is omitted;
both processes lead to the potential for a misperception. Fig. 1
shows an example confusion from the Spanish Confusions Cor-
pus [4] which resulted when the target word “habrá” [there will
be; /abra/] is reported as “acostumbrar” [to get used to; /akos-
tumbrar/] by 9 listeners when presented in 4-talker babble at

Target−plus−masker: acostumbrar

Target: habraTarget: habra a b r a

Masker: 4−talker babble

Babble content

o
u e s t o
t o r

o l b a m o s

i e l o

t i o
m i r

m u

f u

m

Figure 1: An example robust misperception. Upper: Auditory
spectrogram of a speech-in-babble mixture (see 2.2 for details).
Lower: target and masker waveforms with phonemic content of
target and each individual talker in the babble masker.

a signal-to-noise ratio (SNR) of −0.8 dB. Phoneme transcrip-
tions for the target word and the four individual babble tracks
are also shown. While the sequence /bra/ is shared by the tar-
get and confusion, it is evident that additional processes are
needed to explain the misperception. First, there is some evi-
dence for the incorporation of babble segments corresponding
to /o/, /st/, /m/, and later /r/ in temporal locations which are
consistent with their inserted positions in the perceived word
/akostumbrar/. In these cases it is possible that some part of the
segment is energetically-dominant in the mixture during the rel-
evant intervals. Second, elements of the initial /a/ of the target
word may have been sufficiently masked to render its identity
uncertain. Finally, for the initial segments /ak/, while there is
no equivalent segment in the babble, segments with vowel and
voiceless plosive characteristics occur at the right place. Here,
listeners may be using lexical information to hypothesise “acos-
tumbrar” in the absence of a lexical candidate congruent with
the acoustic evidence. In sum, it is plausible that the confusion
arises through an interplay of energetic masking, the incorpora-
tion (i.e. misallocation) of phonetic detail from the masker, and
the failure to include certain details from the target itself.

To examine the extent of target-masker misallocations in
the Spanish Confusions Corpus [4], we adopt here a ‘micro-
scopic’ perspective [5, 6, 7, 8, 9, 10] in which each individ-
ual misperception is independently analysed for evidence of
its composition. We use a tool from robust automatic speech
recognition [11] to identify those time-frequency regions in the
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speech-in-babble mixture that jointly provide the most likely
explanation for the reported percept. Section 2 details the theo-
retical basis, and practical implementation, of the approach we
use to force-align a set of fragmentary evidence from multiple
speech signals to the misperceived word. The outcome of ap-
plying these techniques to over 600 misperceptions from the
corpus is described in Section 3.

2. Identifying misallocation errors
2.1. Theory

The speech-in-noise recognition problem involves finding the

most likely word sequence Ŵ given noisy observations Y

Ŵ = argmax
W

P (W |Y ) (1)

The glimpse decoder [11] provides a formalism for recognis-
ing speech in noise, in which a useful by-product of recogni-
tion is the set of glimpses that forms the evidential basis for
the most likely speech hypothesis. Here, a glimpse is under-
stood as a connected spectro-temporal region where one source
is energetically-dominant throughout the region. The current
study uses the glimpse decoder to answer the question: given
a misperceived word, which set of target and masker glimpses
best accounts for that word? The solution can be expressed as a
simultaneous search over words and segregations S to find the
most likely word/segregation pair, given a set of glimpses G

Ŵ , Ŝ = argmax
W,S∈P(G)

P (W,S|Y,G) (2)

where S is understood as the set of partitions – i.e., members
of the powerset of glimpses, P(G) – of the observations into
those belonging to the target speech and those belonging to
the masker. Via forced-alignment, the glimpse decoder can
be used to find the most likely segregation hypothesis given
the confused word. Implemented using hidden Markov mod-
els (HMMs), we look for the most likely HMM state sequence

Q̂ and segregation given W , G and Y

Ŝ, Q̂ = argmax
S,Q

P (Q,S|W,Y,G) (3)

Here, we are only interested in the segregation component, Ŝ,
since we hypothesise that this defines the set of glimpses from
both target and masker that listeners are most likely to have used
in making their response.

2.2. Input representation

Target speech and masker waveforms are summed at a given
SNR to form the input to a model of the auditory periphery,
leading to an auditory spectrogram (e.g., top panel Fig. 1),
a spectro-temporal representation of auditory nerve excitation
(the noisy observation Y in Eq. 3). This representation is
computed by passing the mixture signal through a bank of 39
gammatone filters with centre frequencies in the range 50–
8000 Hz equally-spaced on an ERB-rate scale, followed by ex-
traction of the instantaneous Hilbert envelope at the output of
each filter, which is subsequently temporally-smoothed and log-
compressed prior to downsampling at 100 Hz.

2.3. Generation of glimpse set G

A glimpse is defined as an 8-connected spectro-temporal region
originating from a single source, and which possesses a positive

Figure 2: Glimpse formation and decoding for the example of
Fig. 1. Upper: glimpses from each source in the mixture (dark
blue: target speech glimpses, GT ; remaining colors correspond
to glimpses of the individual babble channels, collectively GM ).
Lower: most likely segregation Ŝ in which glimpses arise from
both the target word and the masker.

local SNR throughout the region. In the current study, the mix-
ture consists of the target speech and four known background
speech signals that constitute the babble masker. For a given
source sj in the mixture, we compute separate auditory spectro-
grams for sj and the sum of the remaining N − 1 signals. Au-
ditory spectrograms are then compared to identify the regions
where the jth source is dominant, i.e.

f(sj) > f
( N∑

i=1,i �=j

si
)

(4)

where the function f maps a time-domain signal to the audi-
tory representation defined in Section 2.2. The comparison is
done for each time-frequency ‘pixel’. A glimpse from source
sj is defined as a connected spectro-temporal region satisfying
the inequality above. This process is repeated for each of the
sources in the mixture. The set of fragments obtained for each
source are combined to form G, the set of glimpses input to the
decoder

G = GT ∪GM (5)

where

GM =

N−1⋃
i=1

GMi (6)

GT denotes glimpses originating in the target source and GMi

those stemming from the ith babble component. As in [5],
small glimpses (here, those with area < 6 time-frequency pix-
els) are eliminated from G. The upper panel of Fig. 2 shows
glimpses of target and masker components for the example to-
ken of Fig. 1. Regions in white correspond to spectro-temporal
locations where no source is dominant.

2.4. Selecting Ŝ through forced alignment

The auditory spectrogram of the speech-plus-babble mixture Y ,
the glimpse set G, along with the confusion W reported by lis-
teners, serve as input to the forced alignment process which pro-

duces the segregation hypothesis Ŝ, i.e. the subset of glimpses
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in G which best explain confusion W . The lower panel of Fig-
ure 2 indicates the glimpses assigned by the decoder to the con-
fusion W . In addition to the incomplete set of glimpses of the
target, those stemming from one or more of the babble compo-
nents are also included in the segregation hypothesis that best
explains the misperception, illustrating how the misallocation
of signal components might play a role in the formation of the
confusion.

3. Evaluation
3.1. Misperceptions corpus

The dataset of speech misperceptions used in the current study
is a subset of the Spanish Confusions Corpus [4], which con-
sists of 1–3 syllable Spanish target words embedded in one of
five types of masking noise at a range of SNRs. Here, we anal-
yse 610 misperceptions which resulted from the 4-talker babble
masker. In all cases at least 6 out of 15 listeners reported the
same confusion (mean: 8.1). Table 1 lists some example confu-
sions from this dataset.

target word misperception listeners TP MP
antes alcohol 14 0.33 0.09
cerdo entramos 12 0.84 0.13

comenzar buscar 9 0.02 0.23
socios sucios 8 0.98 0.07
sección disección 7 0.54 0.07
casada casarse 6 0.11 0.37
litros comen 6 0.49 0.10

Table 1: Some Spanish word confusions in 4-talker babble. The
number of listeners out of 15 reporting the same confusion is
shown in the column ‘listeners’. Target and masker proportions
(Sec. 3.3) determined by the glimpse decoder are also reported.

3.2. Recogniser

Acoustic models for the glimpse decoder were speaker-
independent 3-state triphone models trained on over 12 000 in-
stances of Spanish words. 10-component Gaussian mixtures,
with model- and state-level tying, were used to represent the
feature distribution of each state. Triphone models were ex-
panded into models of Spanish words for each of the 610 word
confusions reported by listeners.

3.3. Target and masker proportion

Since the source (target or masker) of each glimpse is known,
it is possible to quantify the involvement of both the target and

masker in the most likely segregation Ŝ for each misperception.
We define the Target Proportion (TP) as

TP = count(Ŝ ∩GT )/count(GT ) (7)

where the ‘count’ function computes the total number of
spectro-temporal pixels in the auditory spectrogram for a given
set of glimpses. TP denotes the total area of target glimpses in-

cluded in the most likely segregation hypothesis Ŝ normalised
by the total area of available target glimpses in the set G. The
Masker Proportion (MP) is defined similarly:

MP = count(Ŝ ∩GM )/count(GM ) (8)

TP and MP provide a way to analyse the degree to which
target and masker material contribute to each confusion in the
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Figure 3: Distribution of target and masker proportions across
confusions.

corpus, and enable an analysis of the types of allocation errors
made by listeners.

Figure 3 shows the distribution of target and masker propor-
tions, MP and TP , for the 610 misperceptions analysed here.
In around 150 cases, around a quarter of the total, all, or nearly
all, of the available target glimpses are used in the mispercep-
tion, according to the decoder; half of the confusions make use
of at least 80% of the target glimpses. However, about 100 mis-
perceptions use no material from the target at all. In some of
these cases it is posible that listeners are hearing an entire word
from the background babble. On average, misperceptions make
use of 13% of masker glimpses, and in only 2% of cases is more
than a third of masker material used. This is not surprising since
the masker consists of 4 talkers in parallel, any one of which
could in principle contribute sufficient phonetic information to
create a confusion.

The proportion of time-frequency pixels taken up by the

glimpses in the most likely segregation Ŝ relative to the area of
the target glimpses is shown in Fig. 4. On average the best hy-
pothesis incorporates 23% more of the spectro-temporal plane
than occupied by target glimpses, suggesting that the decoder
frequently makes use of a substantial amount of information
from the background babble.

Figure 5 shows the joint distribution of target and masker
proportion, demonstrating that, at least from the decoder’s point
of view, a listener’s interpretation makes use of both target and
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Figure 4: Distribution of the area of glimpses in Ŝ relative to
the area of glimpses in GT .
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Figure 5: Joint distribution of target and masker proportion,
along with target-confusion phoneme distance class.

masker glimpses in the majority of cases. That is, confusions
arise due to both Type I errors i.e. the incorporation of masker
material, as quantified by MP , and Type II errors i.e. failing to
utilise target material, as quantified by 1− TP .

3.4. Relationship to phoneme distance

Correlations were computed between target and masker propor-
tions and a measure of the phonemic distance between the tar-
get word and the reported confusion. First, phoneme sequences
for each target and confusion were aligned using dynamic pro-
gramming string alignment using penalties of 7 for insertion
and deletion, 10 for substitution of vowel for vowel or conso-
nant for consonant, and 20 for substitution of vowel for conso-
nant (the latter penalty ensures that no such substitutions take
place; instead, they are treated as an insertion and a deletion).
Then, the phoneme distance was calculated as the number of
phonemes inserted, deleted or substituted divided by the length
of the alignment sequence, to obtain a value in the range 0 (no
changes, which never occurs for confusions) to 1 (no phonemes
in common). The phoneme distance computed in this way is
negatively-correlated [r = −0.64, p < 0.001] with target pro-
portion, and positively-correlated [r = 0.44, p < 0.001] with
masker proportion.

Figure 5 also encodes three classes of phoneme distance,
using a classification scheme similar to that of earlier ‘slips of
the ear’ studies [12, 13]: single cases are those involving the
deletion, insertion, or substitution of a single phoneme segment
(e.g., socios �→ sucios); dual cases correspond to changes in-
volving a pair of segments (e.g., sección �→ disección); all oth-
ers are denoted complex (e.g., antes �→ alcohol). While single
cases tend to involve high values of target proportion, there re-
mains a substantial number of cases where the target proportion
is reduced. Conversely, complex cases typically correspond to
low values of TP, but again there is a significant spread. In
many such cases the misperception appears to be due to the
masker material overriding the target signal entirely (TP = 0).
Similarly, the amount of masker involved for all three classes is
highly-variable across tokens. These findings suggest that while
phoneme distance is correlated with target and masker propor-

tion across the corpus, this kind of segmental metric alone is a
poor predictor of the involvement of target and masker glimpses
for any given misperceived token.

4. Discussion
When listening to speech in speech-like maskers, listeners have
to confront not only the energetic masking effects of the back-
ground signal, which acts to reduce the availability of target
speech cues, but also the informational masking effects which
arise when the background has the potential to contribute mis-
leading information, leading to a difficulty in allocating cues to
the target source. This study is a first attempt to quantify the
scale of the misallocation component of informational masking
using a decoder which finds the most likely set of glimpses (re-
gions escaping energetic masking) to contribute to the majority
confusion reported by listeners.

Based on this model, one striking outcome (illustrated by
the near absence of points on the MP = 0 axis of Fig. 5) is
that in only a handful of cases is no information at all from
the masker allocated to the overall misperception. Nearly all
confusions are best-explained by incorporating both masker and
target glimpses, or via masker glimpses alone (TP = 0).

Phoneme distance between the target and confused word
explains some proportion of the misallocation effect, but the
spread of individual cases is too wide for a segmental met-
ric such as this to be a robust predictor. This is likely to be
caused by the strictly temporal nature of the segmental metric.
In contrast, the glimpse decoder takes into account the spectro-
temporal decomposition of the signal. It is possible that more
sophisticated forms of alignment which take into account the
segmental constituents of the babble itself (as shown in Fig. 1)
may lead to better predictions.

The results of the current study depend on the model of
speech perception embodied in the glimpse decoder. This
model has some limitations: for example, currently it does not
take into account word frequency or familiarity effects which
might affect the reported confusion in certain cases. Never-
theless, the proposed approach provides a microscopic mod-
elling framework for evaluating target and masker interactions
in speech perception which can be developed to incorporate ad-
ditional factors which influence the reported percept. Future
work will test the validity of the predictions by measuring lis-
teners’ responses to stimuli based on resynthesis from the pro-
posed most likely set of glimpse components.

5. Conclusions
This study examined the role of signal component misalloca-
tion in misperceptions arising from babble maskers. Glimpse
decoding, a robust speech recognition technique producing the
most likely speech segregation as part of the recognition pro-
cess, identified those spectro-temporal regions in the mixture
that listeners were likely to be treating as evidence for the target
speech. Most confusions were best explained by incorporating
some of the masker material into the speech hypothesis, sug-
gesting that misallocation plays a significant role in generating
confusions in situations involving competing talkers.
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