GALAXY-II: A REFERENCE ARCHITECTURE
FOR CONVERSATIONAL SYSTEM DEVELOPMENT!

Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao, Philipp Schmid, and Victor Zue

Spoken Language Systems Group
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

ABSTRACT

GALAXY is a client-server architecture for accessing on-line in-
formation using spoken dialogue that we introduced at ICSLP-
94. It has served as the testbed for developing human language
technologies for our group for several years. Recently, we have
initiated a significant redesign of the GALAXY architecture to
make it easier for many researchers to develop their own appli-
cations, using either exclusively their own servers or intermixing
them with servers developed by others. This redesign was done
in part due to the fact that GALAXY has been designated as the
first reference architecture for the new DARPA Communicator
Program. The purpose of this paper is to document the changes
to GALAXY that led to this first reference architecture, which
makes use of a scripting language for flow control to provide
flexible interaction among the servers, and a set of libraries to
support rapid prototyping of new servers. We describe the new
reference architecture in some detail, and report on the current
status of its development.

1. INTRODUCTION

In 1994, we introduced GALAXY, a client-server architecture for
accessing on-line information using spoken dialogue [1]. Since
then, GALAXY has served as the testbed for our research and
development of human language technologies, resulting in sys-
tems in different domains (e.g., automobile classified ads [2],
restaurant guide [3] and weather information [4]), different lan-
guages [5], and different access mechanisms [2, 3, 4]. In 1996,
we made our first significant architectural redesign to permit
universal access via any web browser [6]. The resulting WEB-
GALAXY architecture makes use of a “hub” to mediate between
a Java GUI client and various compute and domain servers, dis-
patching messages among the various servers and maintaining a
log of server activities and outputs.

In the process of developing dialogue modules for various do-
mains in GALAXY, we came to the realization that it is critical
to be able to allow researchers to easily visualize program flow
through the dialogue, and to flexibly manipulate the decision-
making process at the highest level. To this end, we developed
a simple high-level scripting language that permits boolean and
arithmetic tests on variables for decisions on the execution of
particular functions. We found this mechanism to be very pow-
erful, and were successful in incorporating it into our newest

I'This research was supported by DARPA under contract N66001-96-C-852,
monitored through Naval Command, Control and Ocean Surveillance Center.

domain servers for weather and flight status information. We
then began to contemplate the idea of incorporating an anal-
ogous mechanism into the program control of the entire sys-
tem, which was being maintained by the GALAXY hub. At
about the same time, discussions were beginning on the possi-
bility that GALAXY be designated as the reference architecture
for the soon-to-be-launched DARPA Communicator Program?
whose goal is partly to promote resource sharing and plug-and-
play interoperability across multiple sites for the research and
development of dialogue-based systems. It seemed possible for
a scripting language, modelled after the dialogue tools developed
for our domain servers, to support a programmable hub for the
DARPA Communicator.

In the remainder of this paper, we will first discuss the design
considerations. This will be followed by a description of the
first implementation of this reference architecture, ending with a
report on the status of its development.

2. DESIGN CONSIDERATIONS

During the design phase of GALAXY-II, several meetings were
arranged, under the auspices of DARPA, among researchers
from various institutions in the U.S.A. who had expertise in di-
alogue system architecture design. During these meetings, two
topics which received a lot of attention were the nature of the
control strategy and the appropriate decomposition of the server
population (recognizer, dialogue control, etc.).

There appeared to be two main camps on control strategy: those
who favored a more programmatic style of control (i.e., sequen-
tial rules) [7] and those who favored an open-agent architec-
ture [8], involving either explicit or implicit message passing
among the various servers. We eventually settled upon a compro-
mise scheme which we believe will be workable for both styles
of control. Our GALAXY-II implementation is based on sequen-
tial rules. We hope that at a future time someone will attempt
an open-agent or message-passing implementation based on the
framework described here. We believe it should require only mi-
nor extensions to the code to accommodate these needs.

In terms of the server responsibilities, it was logical to define
separate servers for speech recognition, natural language under-
standing (which was renamed as “frame construction” to mini-
mize overgeneralization of terminology), natural language gen-
eration, and speech synthesis. However, the components that

2For a description of the Communicator Program and documentation of the
architecture, see http://fofoca.mitre.org.



GENESIS

Language
DECTALK Generation
& ENVOICE D-Server
Text-to-Speech Dialogue
Conversion Management
Audio \/ \/ Application
Server HUB Back-ends
Phone & -Server
Speech Context
Recognition Tracking
SUMMIT Di
Frame
Construction
TINA

Figure 1: Architecture of GALAXY-II.

dealt with discourse, dialogue, and database retrieval were not
sorted out in the same way among the groups represented at the
meetings. Our group at MIT did, however, acquire from the dis-
cussions a clear vision of how we should reorganize various sys-
tems based on the GALAXY architecture to “comply” with the
constraints of the emerging DARPA Communicator standards.

The resulting configuration of the GALAXY-II architecture is
shown in Figure 1. The new architecture retains the client-server
nature of the original design. The boxes in this figure represent
various human language technology servers as well as informa-
tion and domain servers. They are labelled with their associated
roles as agreed upon by the committee. The label in italics next
to each box identifies the corresponding MIT system component.
The main organizational changes from the previous version of
GALAXY were to force our domain servers to redirect any former
communications with our generation system, GENESIS [11], and
with any database servers (I-servers in our terminology), such
that, in the new configuration, these interactions were mediated
by the hub and managed in the hub script. The other major orga-
nizational change was to extract the user interface functionality
into separate audio and GUI servers, further simplifying the in-
ternal responsibilities of the hub. In addition, we regularized the
communication protocols for all of the servers so that they could
share a common server shell library.

3. IMPLEMENTATION

The hub interaction with the servers is controlled via a scripting
language. A script includes a list of the servers, specifying the
host, port, and set of operations each server supports, as well as
a set of one or more programs. Each program consists of a set of
rules, where each rule specifies an operation, a set of conditions
under which that rule should “fire,” a list of input and output
variables for the rule, as well as optional store/retrieve variables
that come from the discourse history. When a rule fires, the input
variables are packaged into a roken and sent to the server that
handles the operation. The hub expects the server to return a
token containing the output variables at a later time. There is
the option of no output variables, in which case interaction is
one-way only. The input and output variables are all recorded
in a hub-internal master token. The discourse history will also

RULE: :ParseFrame & !:RequestFrame — context_tracking
RETRIEVE: :HistoryFrame

IN: :ParseFrame

OUT: :RequestFrame :HistoryFrame :Domain

STORE: :HistoryFrame

Figure 2: Example rule in the hub script.

be updated, if the rule has so specified. The conditions consist
of simple logical or arithmetic tests on the values of the typed
variables in the master token. The hub communicates with the
various servers via a standardized frame-based protocol.

A particular dialogue session is initiated by a user either through
interaction with a graphical interface at a Web site, through di-
rect telephone dialup, or through a desktop agent. Our current
plan is to support graphical and/or spoken interactions with mul-
tiple users simultaneously via a single hub instantiation, with
the record of the current status of each session (its input/output
language(s), current domain, dialogue history, etc.) being sepa-
rately maintained in the hub. Tokens from multiple simultaneous
sessions would compete for the server resources as specified by
the hub script.

3.1. Example Rule

An example rule is shown in Figure 2. This rule states that, if a
ParseFrame exists but a RequestFrame has not yet been gener-
ated (denoted by “!”), then call the “context_tracking” operation,
by sending the ParseFrame to the discourse module for evalua-
tion. Also send the previous history to define the context, which
is retrieved from the hub’s history record logged with the session.
This operation, when completed, will return a token to the hub,
containing an updated version of the HistoryFrame, a commit-
ment to a particular domain, and a RequestFrame, which is the
user query expanded to include any augmentations due to inher-
itance rules. The updated HistoryFrame is stored in the history
record to become context for the next utterance.

3.2. Program Flow Control

A simple communication protocol has been adopted and stan-
dardized for all hub/server interactions. Upon initiation, the hub
first handshakes with all of the specified servers, confirming that
they are up and running and sending them a “welcome” token
that may contain some initialization information, as specified in
the hub script. The hub then launches a wait loop in which the
servers are continuously polled for any “return” tokens>. Each
token is named according to its corresponding program in the
hub script, and may also contain a rule index to locate its place
in program execution®, and a “token id” to associate it with the
appropriate master token in the hub’s internal memory. The rule
is consulted to determine which “OUT” variables to update in
the master, and which variables, if any, to store in the discourse
history. Following this, the master token is evaluated against
the complete set of rules subsequent to the rule index, and any
rules that pass test conditions are then executed. In the current

3Servers can also spontaneously send tokens to the hub without having first
received a token from the hub.

4The sequential constraints can be easily eliminated, leading to a more open-
agent architecture type of control.



implementation, the usual case is that only one rule fires, al-
though simultaneous rule executions can be used to implement
parallelism, a feature that we have exploited, for example for N-
best processing. Servers other than those that implement user-
interface functions are typically stateless; any history they may
need is sent back to the hub for safekeeping, where it is associ-
ated with the current utterance. Common state can thus be shared
among multiple servers.

To execute a given rule, a new token is created from the master
token, containing only the subset of variables specified in the
“IN” variables for the rule in question. This token is then sent to
the server assigned to the execution of the operation specified by
the rule. If it is determined that the designated server is busy (has
not yet replied to a preceding rule either within this dialogue or
in a competing dialogue) then the token is queued up for later
transmission. Thus the hub is in theory never stalled waiting for
a server to receive a token. The hub then checks whether the
server that sent the token has any tokens in its input queue. If so,
it will pop the queue before returning to the wait loop.

Thus far we have only experimented with N-best lists as outputs
from the recognizer (as opposed to word graphs, for example).
The recognizer sends to the hub each hypothesis as a separate
token, signalling completion with a special final token. All of the
tokens for a given utterance are jointly considered, after frame
construction, by a “gather” server (omitted from Figure 1 for
simplicity), which takes into consideration the quality of each
hypothesis’ meaning analysis, specially selecting for any salient
words (cities in focus in Jupiter, for example) from the dialogue
context. Early decisions are made when a hypothesis is perfect;
otherwise the final decision is delayed until the last hypothesis
has been processed. The gather server would also be responsible
for rejecting an utterance if the system judges all hypotheses to
be implausible [?].

The selected token is processed through discourse inheritance
via the hub script and sent on to the dialogue manager. The dia-
logue manager usually initiates a subdialogue in order to retrieve
information from the database. It composes a frame which is sent
to GENESIS for paraphrasing into SQL, and the output string is
then passed along to the database for retrieval. The retrieved
database entries are returned to the dialogue manager for inter-
pretation. These activities are controlled in a separate program in
the hub script, which we refer to as a module-to-module subdia-
logue. Finally, the dialogue manager sends a reply frame to the
hub which is passed along to generation and synthesis. After the
synthesized speech has been transmitted to the user, the audio
server is freed up to begin listening for the next user utterance.

3.3. System Development Tools

The hub can be run in a debugging mode in which the hub script
can be stepped through one rule at a time. The hub script also
controls specification of the variables to be recorded in a log file,
another useful debugging device. Spoken waveforms are auto-
matically recorded to file for later system training.

The hub contains a special internal “server,” which handles
meta-level commands that manipulate its history record, such
as “scratch that” and “clear history.” This server also provides
session management and asynchronous i/o support functions.

Each server is compiled on top of a server shell library, which
provides convenient routines for interfacing with the hub, as well
as a support mechanism for a top-level scripting language to
manage program flow, as described in the introduction. This lan-
guage is similar to the one used by the hub, but has a simpler
protocol. This mechanism has been used thus far only by our
database and domain servers for managing dialogue control, but
we expect to incorporate it into the NL servers as well.

Most but not all of the communications among the various
servers are routed through the hub. However, high data-rate mes-
sages (e.g., speech waveforms) are brokered by the hub instead,
in order to reduce the network load. The audio server sends
the hub a token informing it of an impending waveform. The
hub consults the existing recognizer servers, as dictated by the
hub script, to determine if any are free to receive a waveform
at this time, and then directs the free recognizer to receive the
waveform data directly from the audio server. We envision that
M recognizers would be jointly servicing up to N simultaneous
conversations (M < N) with resource sharing taking place on
an utterance-by-utterance basis, as contrasted with assigning a
recognizer for the duration of a dialogue, which would be less
efficient.

4. SEMANTIC FRAME REPRESENTATION

We expect that researchers utilizing the GALAXY-1II system will
be developing servers which will need to interface with a suite
of existing servers already in place. In such cases, it is necessary
for the servers to share a common language in the representa-
tions they jointly process. Researchers who choose to replace
all the servers are free to use whatever meaning representations
they find convenient. However, if the intent were to replace a
subset of servers, for example, a new dialogue manager or a new
language generation server, then the new server would have to
adopt the meaning representation protocol that was in use by the
replaced component. Thus we think it is appropriate to provide a
brief description of the meaning representation formats that have
been adopted by our systems.

In the process of developing conversational systems in multiple
domains over the last decade, we have constructed a minimal
linguistic specification of a meaning representation that we feel
is adequate for most applications of interest to us. Our TINA
system [9] outputs semantic frames in this format, and our GEN-
ESIS [11] system can paraphrase in multiple languages from this
representation. Our discourse component [12] depends critically
upon this format for proper functioning, and our domain servers
[2, 3, 4] construct reply frames in this format, which are used as
input to our ENVOICE synthesizer [13].

We view the linguistic/semantic world as consisting of three
main types of constituents, which we call clause, topic, and pred-
icate’. A clause constituent generally occurs at the highest level,
and usually represents the high level goal of the user request,
which could be, for example, “display,” “record,” “repeat,” “re-
serve,” etc. Topics generally correspond to noun phrases, and
predicates are typically attributes, which could be expressed as
verb phrases, prepositional phrases, or adjective phrases. A se-

mantic frame is, then, a named and typed structure, with one of

5A somewhat different intent from the usual definitions of these terms.



clause:
{ display
topic:

{ flight
number: pl
predicate:

{ from
topic:
}
predicate:
{ to
topic:

}

{ city name: Boston }

{ city name: Denver }

Figure 3: Example semantic frame for the sentence, “Show me
flights from Boston to Denver.”

the above three types.

Semantic frames also contain contents, and there is a library of
tools available for manipulating the contents. Traditional lin-
guistic contents include an optional topic and zero or more pred-
icates. A frame can also contain a set of (key: value) pairs, where
the key can be any symbol-string, and the value is one of: (1) an
integer, (2) a string, (3) a semantic frame, and (4) a list of val-
ues in categories (1)-(3). We use the (key: value) notation for
syntactic features such as number and quantification. Conjunc-
tion is encoded with a “conj” key, and there is a distinguished
“name” key for named entities. The (key: value) notation is very
generic, however, and it has allowed us to represent almost any
information we need to record, for example database retrievals,
in semantic frame format. For instance, the key “airline” has the
value “United” as retrieved from the database. In fact, the token
that is sent between the hub and the servers is also itself an in-
stance of a semantic frame®, although at the highest level it only
utilizes the (key: value) feature of the frame.

An example semantic frame for the sentence “Show me flights
from Boston to Denver.” is shown in Figure 3.

5. STATUS

The redesign and implementation of the GALAXY architecture
started in early January 1998. At this writing, the programmable
hub is fully functional, and has been delivered to MITRE’, who
will serve as the custodian for its maintenance and distribution.
It includes a graphical interface accessible via a browser and an
audio interface accessible by either a microphone or a telephone.
An initial implementation of a complete JUPITER system [14]
has also been implemented and delivered to MITRE. This system
has been extensively tested, both through batch-mode regression
testing and actual telephone deployment. Interested parties are
referred to the MITRE web site (http://fofoca.mitre.org) for fur-
ther information regarding the architecture, the API, documenta-
tion, and procedures for acquiring it.

STt is a clause whose name is the program it refers to.
7Beta-releases have also been distributed to a few other organizations includ-
ing Intel, Lockheed-Martin, and HRL.

6. ACKNOWLEDGMENTS

The work described in this paper encompasses the efforts of
many other present and past members of the Spoken Language
Systems Group. They include: Giovanni Flammia, Jim Glass,
Dave Goddeau, Lee Hetherington, Joe Polifroni, and Jon Yi.
The redesign of GALAXY has benefitted from discussions with
researchers at AT&T (Esther Levin and Roberto Pieracinni)
Microsoft (Xue-Dong Huang), MITRE (Sam Bayer, Lynette
Hirschman, Susann Luperfoy, and Rod Holland), OGI (Phil Co-
hen) and University of Rochester (James Allen).

7. REFERENCES

1. P.Cohen, A. Cheyer, M. Wang, and S.C. Baeg. ”An Open Agent
Architecture,” Proc. AAAI Spring Symposium, pp. 1-8, Mar.
1994,

2. J. Glass, J. Polifroni and S. Seneff, “Multilingual Language
Generation Across Multiple Domains,” Proc. ICSLP ’94,
pp. 983-986, Yokohama, Japan, Sept. 1994.

3. J. Glass and T.J. Hazen, “Telephone-based Conversational
Speech Recognition in the Jupiter Domain,” These proceedings.

4. D. Goddeau, E. Brill, J. Glass, C. Pao, M. Phillips, J. Polifroni,
S¢, Seneff, and V. Zue, “GALAXY: A Human Language Inter-
face to Online Travel Information,” Proc. ICSLP ’94, pp. 707—
710, Yokohama, Japan, Sept. 1994.

5. C. Wang, J. Glass, H. Meng, J. Polifroni, S. Seneff, and V. Zue,
“YINHE: A Mandarin Chinese Version of the GALAXY Sys-
tem,” Proc. EUROSPEECH-97, pp. 351-354, Rhodes, Greece,
Sept. 1997.

6. R. Lau, G. Flammia, C. Pao, and V. Zue, "WEBGALAXY - In-
tegrating Spoken Language and Hypertext Navigation,” Proc.
EUROSPEECH-97, pp. 883886, Rhodes, Greece, Sept. 1997.

7. H. Meng, S. Busayapongchai, J. Glass, D. Goddeau, L. Hether-
ington, E. Hurley, C. Pao. J. Polifroni, S. Seneff, and V. Zue,
“WHEELS: A Conversational System in the Automobile Clas-
sifieds Domain,” Proc. ICSLP ’ 96, Philadelphia, PA, pp. 542-
545, Oct. 1996.

8. C. Pao, P. Schmid, and J. Glass, “Confidence Scoring for
Speech Understanding Systems,” These Proceedings, Syndey,
Australia, Nov. 1998.

9. R. Pieraccini, E. Levin, and W. Eckert, "AMICA: The
AT&T Mixed Initiative Conversational Architecture,” Proc.
EUROSPEECH 97 pp. 1875-1878, Rhodes, Greece, Sept.
1997.

10. S. Seneff, “TINA: A Natural Language System for Spoken Lan-
guage Applications,” Computational Linguistics, Vol. 18, No.
1, pp. 61-86, 1992.

11. S. Seneff, “Robust Parsing for Spoken Language System,”
Proc. ICASSP ’92, pp. 189-192, San Francisco, CA, 1992.

12. S. Seneff, D. Goddeau, C. Pao, and J. Polifroni, “Multimodal
Discourse Modelling in a Multi-User Multi-Domain Environ-
ment,” Proc. ICSLP ’96, pp. 192195, Philadelphia, PA, Oct.
1996.

13. S. Seneff and J. Polifroni, “A New Restaurant Guide Conversa-
tional System: Issues in Rapid Prototyping for Specialized Do-
mains,” Proc. ICSLP ’ 96, pp. 665-668, Philadelphia, PA, Oct.
1996.

14. J. R. Yi and J. R. Glass, “Natural-sounding Speech Synthesis
using Variable-length Units,” These Proceedings., Sydney, Aus-
tralia, Nov. 1998.

15. V. Zue, S. Seneff, J. Glass, L. Hetherington, E. Hurley, H.
Meng, C. Pao, J. Polifroni, R. Schloming, and P. Schmid, “‘From
Interface to Content: Translingual Access and Delivery of On-
Line Information,” Proc. EUROSPEECH ’97, pp. 2227-2230,
Rhodes, Greece, Sept. 1997.



