ON THE INTERACTION BETWEEN TIME AND FREQUENCY FILTERING
OF SPEECH PARAMETERS FOR ROBUST SPEECH RECOGNITION

Dusan Macho* and Climent Nadeu**

*Dept. of Telecommunications, Slovak Technical University and Dept. of Speech Analysis and Synthesis,
Slovak Academy of Sciences, Bratislava, Slovakia
**Dept. of Signal Theory and Communications, Universitat Politécnica de Catalunya, Barcelona, Spain

ABSTRACT

One of the great today’s challenges in speech recognition is to
ensure the robustness of the used speech representation. Usually,
the recognition rate is strongly reduced when the speech is
corrupted, e.g. by convolutional or additive noise, and the
speech features are not designed to be robust. In this paper we
study the effect of additive noise on the logarithmic filter-bank
energy representation. We use time and frequency filtering
techniques to emphasize the discriminative information and to
reduce the mismatch between noisy and clean speech
representation. A 2-D spectral representation is introduced to see
the regions most affected by noise in the 2-D quefrency-
modulation frequency domain and to help to design the
frequency and time filter shapes. Experiments with one and two
dynamic feature sets show the usefulness of the combination of
time and frequency filtering for both, white and low-pass noise
speech recognition. At the end the power time and frequency
filtering technique is presented.

1. INTRODUCTION

Only a part of the information contained in the speech signal is
used for speech recognition. Moreover, a speech signal can be
distorted by non-speech components (e.g. channel or
microphone distortion, additive noise, reverberation...). It is
necessary to extract phonetically important features with good
discriminative properties and robustness when used in adverse
environments.

For recognition purposes, speech is often converted to a time
sequence of log filter-bank energies (log FBE). In this way, the
considered speech unit is represented as a two-dimensional (2-
D) time-frequency sequence. This sequence is further processed
in order to obtain more robust and discriminative features (e.g.
transformed to mel-cepstrum, RASTA filtered [1]...). Recently,
the authors in [2] showed that a simple filtering performed on
the frequency dimension of every frame (Frequency Filtering —
FF) gives better recognition results for clean speech than
cepstral coefficients. The FF can be seen as a liftering operation
performed in the spectral domain. The frequency filters in [2]
were designed to equalize the variance of cepstral coefficients
and a simple, database independent, second-order filter z-z’
(here denoted as FF2) was found as a good compromise. In [3],
the FF features appeared more robust than cepstral coefficients
when speech is distorted by additive white noise and a first-
order filter -z (FF1) gave good recognition results.

The components of the speech feature vector vary in time,
according to the changes of the speech signal, describing time

trajectories. The spectrum of the time trajectory is called
modulation spectrum. The typical speech modulation spectrum
decreases along the modulation frequency axis [4]. Thus, the
low modulation frequencies generally dominate the distance
computation in the classifier (similarly, as do the low quefrency
components) but they do not carry the most discriminative
information [5]. Moreover, when the speech is corrupted by
stationary convolutional noise, the 0™ modulation frequency is
the most affected in the log FBE representation. Thus, filtering
on the time dimension (Time Filtering — TF) can remove
undesirable parts of the modulation spectrum.

In [5], both time and frequency filtering were presented jointly,
but considering that there is not interaction between them.
However, we recently observed some facts that led us to
consider that the interaction exists. Firstly, the noticeable better
clean speech performance of FF with respect to cepstrum that is
obtained when only one static feature set (without TF) is used,
may be reduced to a slight difference if dynamic features are
included in the representation. Second, FF looses its good
performance for noisy speech when the noise is colored.

In this work, we gain more insight into that interaction problem
by using the 2-D modulation spectrum representation obtained
from log FBE sequence. We observed, for example, that the
mean value of that 2-D function for noisy speech shows higher
values at low indices than the corresponding function for clean
speech. Thus, TF and FF can improve the recognition rate by
attenuating the most distorted regions. Moreover, in the same
way that it can be convenient to use slightly different time filters
in two different frequency bands [6], the use of different
frequency filters in different modulation frequency regions can
also increase the recognition performance for speech distorted
by additive noise. For designing the filters, we can take
advantage of that 2-D spectral representation.

For the recognition tests presented in this paper, we used the
following conditions: single digits from the adult portion of the
TI database, decimated from 20 kHz to 8 kHz sampling rate; no
preemphasis; 30 ms long Hamming windowed frames with 10
ms shift; 13-order log FBE basic parameterization scheme;
continuous density HMMs with 8 states per digit and 3 states for
the silence model; for noisy speech, either stationary white
additive noise or low-pass additive noise with cut-off frequency
1100 Hz were added to the clean speech to obtain SNR equal to
20 dB and 10 dB. Training was performed always with clean
speech and testing with noisy speech.

This work was carried out during the stay of D. Macho at UPC
Barcelona and sponsored by Spanish govemnment and partially by
Slovak Academy of Sciences.



2. THE 2-D MODULATION SPECTRUM

For better analysis purposes, we spread modulation spectrum
representation [4] in two dimensions, where the modulation
spectrum of every cepstral coefficient is present. Let log S(k,n)
be the short-time log FBE estimate of the speech signal with &
denoting the filter-bank output and » the frame index. The 2-D
modulation spectrum (in [7], the modulation spectrogram has
been introduced which displays the evolution of low modulation
frequencies in time and frequency) is then estimated by

computing and averaging function |C (m,ﬁ]z over a speech

database. |C (m, 49]2

transforming from the frequency domain & to the quefrency m
and by the Fourier transforming from the time domain # to the
modulation frequency domain & ,

is obtained by inverse discrete-Fourier

log S (k,m)—2 e s c(m,m)—L 5C(m,0) i IC(m,9)|2.(2)
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Figure 1: 2-D modulation spectra of (a) clean and (b) white
noise speech with SNR=10dB

The 2-D modulation spectrum estimated from clean isolated
digits database is shown on Figure 1(a). The decreasing ftilt in
both dimensions can be observed. Figure 1(b) shows the 2-D
modulation spectrum of speech distorted by additive white
noise. The low indices in quefrency and modulation frequency
seem to be the most affected by noise.

The mismatch between training and testing log FBE
representation is the main reason of the poor recognition results
obtained when the speech corrupted by additive noise is used for
testing. We computed the mismatch between the clean and noisy
speech representation as

Cm,-s_v(m,e)-Cc,m(m,a)|2 forallmand 6, 3)

and averaging it over many speakers and utterances we
estimated the 2-D modulation spectrum of mismatch. Figure 2
shows the 2-D modulation spectra of mismatch for speech
corrupted by additive white noise (a) and additive low-pass
noise (b), both for SNR=10dB. The largest mismatch is situated
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Figure 2: 2-D modulation spectra of mismatch for (a) additive
white noise and (b) additive low-pass noise, both with
SNR=10dB



in low quefrencies and modulation frequencies with its
maximum at the (0,0) point. Note the difference along quefrency
between both figures (especially at low modulation frequencies),
while along modulation frequency they are similar. In both
figures, when the modulation frequency increases, low and
middle quefrencies are less affected and can be used for
recognition. Using FF and TF, we can remove the distorted part
of the 2-D modulation spectrum and even better discriminative
properties of features can be obtained. If we emphasize two
different regions in the modulation frequency dimension by
using two different time filters, one for each of two feature sets,
we can use a different frequency filter for every region in order
to weight differently in the quefrency dimension. In the
following sections, the effect of frequency and time filtering on
the recognition performance is shown.

3. RECOGNITION TESTS

3.1 Static Feature Set

If no TF is used, we refer to the speech representation as a static
feature set. In the following, only the effect of the frequency
filtering is presented. For this purpose, we used 13 different
frequency filters of length 3 with system function (z-1)(z+a),
where a changes from —0,2 to 1,0 with step 0,/ (note, that the
filter with a=0 is FF1 and a=1 is FF2). The transform response
of the filter is a quefrency function (a lifter). Changing the
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Figure 3: Recognition rate in terms of the FF and TF used
in the parameterization for (a) clean and (b) white noise
speech with SNR=10dB

parameter a of the filters in the interval <-0,2; 0,2>, the shape
of the lifters in low and middle quefrencies changes, while does
not change much in high quefrencies. When the parameter a
changes in the interval <0,6; 1,0>, the lifter shape in the high
quefrencies changes while in low and middle quefrencies it does
not. Since the first and the last filtered log FBE of each frame
contain absolute energy [2] they can carry much noise, so that
they were not used in this feature set.

Figure 3 shows the recognition rates for all filters. The clean
speech recognition rate (Figure 3(a)) increases when g increases
and FF2 gives the best results. However, when the speech is
corrupted by additive white noise (Figure 3(b)), filters that
attenuate low and middle quefrencies are preferable. This is due
to fact that, although the low and middle quefrencies are useful
for clean speech recognition, they are severally affected by noise

[8].
3.2 One Time-Filtered Feature Set

In this case, time filtering is applied to the sequence of features.
As time filters we used the two different Slepian filters (the
same as those in [4] with parameters K=/, W=12, L=14,
denoted as TF1 and K=2, W=12, L=14 denoted as TF2) joint
with equalization 1-0,97z7. TF1 preserves the modulation
frequencies of speech roughly from 0 Hz to 3 Hz and TF2 from
2Hzto 9 Hz.

The first test we performed was without frequency filtering.
From the first two lines of Table 1 it seems that the features
from the TF1 region yield more discriminative information
(97,71% recognition rate for clean speech) than those from the
TF2 region (95,13%). However, when noisy speech is
recognized, the TF2 features give better results and are more
robust than the features from the TF1 region.

Technique [ Clean [ SNR=20dB [ SNR=10dB
White noise
TFI1, no FF 97,71 50,70 16,10
TF2, no FF 95,13 64,10 41,01
TF1, FF1 13/12 97,79 94,37 82,98
TF1, FF2 13/12 99,16 95,90 81,17
TF2, FF1 13/12 97,26 92,84 77,02
TF2, FF2 13/12 98,39 95,13 79,60
Low-pass noise
TF1, FF1 13/12 97,79 90,38 78,11
TF1, FF2 13/12 99,16 90,30 77,14
TF2, FF1 13/12 97,26 92,23 77,99
TF2, FF2 13/12 98,39 93,32 78,63

Table 1: Recognition rates in % using TF1, TF2 without
frequency filtering and with FF1 and FF2

The situation changes when FF is used in conjunction with TF.
Figure 3 shows the behavior of both, TF1 and TF2 feature sets
in terms of different FFs. For clean speech, the TF1 features
give better results for every FF than the TF2 features (see Figure
3(a)). In the noisy case, the frequency filtering partially reduces
the high content of noise in TF1 region and the recognition rates
even outperform the TF2 results (Figure 3(b)). Moreover, a
different behavior of the feature sets from two mentioned
modulation frequency regions can be observed. For the TF1
region, the frequency filters which attenuate more the low and



middle quefrencies (those with a=<-0,2; 0,2>) give slightly
better results than the others for noisy speech. Attenuating the
high quefrencies in this region seems to improve the recognition
too (filters with a=<0,6; 1,0>). For the TF2 region, an
increasing tendency in the recognition rate can be observed
when the coefficient a increases and FF2 is the optimal filter.

We tried to include the first and the last filtered log FBE to the
feature vector. Only including of the first one improved the
noisy speech recognition. In general, the first log FBE contains
more speech energy and is not affected by additive noise so
much as the last one, which contains less speech energy. Table 1
shows the recognition rates with the first log FBE included in
the feature vector.

In the additive low-pass noise case, the results from experiments
when only FF is used are very low (near 17% for FF1 or FF2
and SNR=10dB). This is due to fact, that the filtered log FBEs
include the step of the transition band of the noise spectrum.
Since the step effect is constant in the time, it can be almost
canceled by the time filter. Results with different time and
frequency filters are in the Table 1.

3.3 Two Time-Filtered Feature Sets

The recognition rate can be improved using features from both
time-filtered regions in two different feature sets. We have
found the static feature set is a source of errors when used
together with time-filtered features and we do not use it. In the
Table 2, the recognition tests are presented for three
combinations of time and frequency filters. For clean speech, the
best recognition result is obtained when FF2 filter is used for
both time-filtered feature sets. When FF1 is used, the
recognition for clean speech decreases, but increases for noisy
speech. From Figure 3(b) it can be observed (here the feature
sets were used separately), that for the TF1 feature set the
frequency filters which attenuate low and middle quefrencies are
preferable and for TF2 features, the FF2 is the best filter. Using
this observation, an additional improvement for noisy speech
recognition was obtained. At the end of Table 2 the best
recognition rates for low-pass noise speech are mentioned.

Technique [ Clean [ SNR=20dB | SNR=10dB
White noise

FF1 13/12, TF1 &

FF1 13/12. TF2 98,15 96,18 86,68
FF2 13/12, TF1 &

FF2 1312, TR 99,48 97,06 84,59
FF1 13/12, TF1 &

FF2 13/12. TF2 99,12 96,74 88,01

Low-pass noise
FF1 13/12, TF1 &
FF2 13/12. TR 99,12 94,16 81,41

Table 2: Recognition rates in % for two feature sets

3.4 Power Frequency and Time Filtering

In this technique we assumed, that in the log FBE representation
of noisy speech the high-energy coefficients are less affected by
noise than the coefficients with low energy content. Thus, we
use simple power operation on the log FBEs before they enter to
the FF in order to emphasize the high-energy coefficients. In

general, the power operation can be expressed as |10gS (k,n]y .

Table 3 shows the results from the same experiments as Table 2
but using square-power frequency and time filtering (¥ = 2) for
two feature sets. A clear improvement for noisy speech can be
obtained while the recognition rates for clean speech do not
decrease.

Technique [Clean [ SNR=20dB | SNR=10dB
White noise

FF1 13/12, TF1 &

FF1 13/12, T2 98,43 97,22 91,51
FF2 13/12, TFL &

FF2 13/12, TF2 99,28 98,03 90,95
FF1 13/12, TFL &

FF2 13/12, TF2 99,16 97,63 92,31

Low-pass noise
FF1 13/12, TFL &
FF2 13/12, TF2 99,16 96,62 89,66

Table 3: Recognition rates in % for two feature sets using square-
power frequency and time filtering

4. CONCLUSIONS

So far, time and frequency filtering have been studied
separately. In this paper, we offer an introduction to their joint
investigation. We showed TF-FF features are robust against
stationary, additive white and low-pass noises for isolated digit
recognition. A great advantage of this technique is that it does
not decrease clean speech recognition results. In the further
work, a 2-D filter can be designed, which will include different
FF in different TF regions in one feature set. Moreover, the
power coefficient can be optimized. Also, we want to extend the
mentioned techniques to more difficult tasks.
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