USING X-GRAM FOR EFFICIENT SPEECH RECOGNITION

Antonio Bonafonte and José B. Marifio
{antonio|canton}@gps.tsc.upc.es

Universitat Politécnica de Catalunya

C/Jordi Girona 1-3

ABSTRACT

X-grams are a generalization of the n-grams, where the number
of previous conditioning words is different for each case and
decided from the training data. X-grams reduce perplexity with
respect to trigrams and need less number of parameters. In this
paper, the representation of the x-grams using finite state
automata is considered. This representation leads to a new
model, the non-deterministic Xx-grams, an approximation that is
much more efficient, suffering small degradation on the
modeling capability. Empirical experiments for a continuous
speech recognition task show how, for each ending word, the
number of transitions is reduced from 1222 (the size of the
lexicon) to around 66.

1. REVIEW OF X-GRAMS

One of the main components in continuous speech recognition
is the language model. The model has to estimate the a priori
probability of each possible sentence. The most extended
models are based on n-grams, basically bigrams or trigrams,
which estimate the probability of each word taking into account
only the previous n-1 words. Recently, the authors have
introduced x-grams [1]. The difference between n-grams and x-
grams is that, in x-grams, the length is not fixed by the designer
of the language model, but found automatically by the
algorithm from the training data. For each sequence of given
words, the method decides the number of words which really
conditionate the probabilities of the incoming words. To decide
if a history is relevant or not, the algorithm uses the number of
times that the history occurs in the training data and the
divergence function [1]. X-grams are estimated using back-off
smoothing.

X-grams are more efficient than trigrams in the following sense:
X-grams are more compacts (smaller) than trigrams and produce
smaller perplexity. This is because some probabilities
distributions conditioned by the two previous words do not
improve the estimation with respect to the use of only the one
previous word. On the other hand, in other cases, the estimation
of the probabilities conditioned by the 3, 4 or, in general, the x
previous words is significantly better that the estimation
considering only the two previous words.

To illustrate this, table 1 shows the perplexity and the number
of histories considered in trigrams and with x-grams. The task
consists in queries to a database with geographical information
(rivers, mountains, cities, etc.). The models are trained using
8262 queries (90.000 words) and the perplexity is evaluated

This research was supported by CICYT, contract TIC95-0884-C04-02

08034 Barcelona, SPAIN

using 1147 queries. All the queries in the training and in the test
are different. The size of the lexicon is 1222 words.

Model Perplexity # histories
trigram 8.3 7526
X-grams 7.8 5915

Table 1: Comparison of trigrams and x-grams.

2. REPRESENTATION OF X-GRAMS

This paper treats about the representation of x-grams. It also
applies, as a particular case, to n-grams.

Let’s assume that a language model is estimated using only the
following data ($ stands for the beginning and the end of the
sentence): abb

If the language model is a smoothed trigram, the histories that
will appear are: {<$>, <a>, , <$a>, <ab>, <bb>}

Non seen histories, for instance <ba>, are not necessary
because the probabilities p(+/ba) are estimated using p(-/a). For
instance, the probability of the sentence aab:

p(aab) = p(a/$) p(ai$a) p(b/$aa) p($/$aab)

is approximated by

p(8aab$) = p(al$) p(ai$a) p(bla) p($/ab)

In the case of x-grams, it can happen that some of these
histories are considered irrelevant while other longer ones are
considered important. Suppose that the retained histories for a
x-gram are only: {<0>, <$>, <a>, <ab>}

In this case, the probability would be approximated by:
p(aab) = p(al$) p(ala) p(bla) p($)

Note that because some bigram histories are not retained (in
particular,), the unigram history (<0>) has to be included
(for instance to compute p($).)

2.1 Expanded representation.

X-grams (as n-grams) can be represented as a deterministic
stochastic finite state automaton (stochastic because it contains
probabilities; deterministic because from each state and for each
word, there is only one transition labelled with this word). The
states of the automaton are identified with the selected histories.
The transitions are labelled with words and probabilities of
words given the history. Figure 1.a shows the representation of
the previous x-gram. It can be seen how there are 4 states (the
same that the number of selected histories). Because of the
smoothing, each word of the lexicon (and the end of the

sentence) can happen after each history. This is why the number

of transitions from each state is three.

Figure 1: Representation of a x-gram using a finite state
automaton. a) On the left, expanded representation; b) On the
right, compact representation using null-transitions.

The advantages of this representation are the following: the
number of states depends on the number of selected histories,
independently of the unseen or unselected histories.
Furthermore, the representation is very simple and very
efficient to analyse input text: for each word, a transition has to
be followed.

The main disadvantage is the size: as there is as many
transitions as words, the size is prohibitive even for moderate
lexicon sizes. For instance, for the geographical task, the
number of states is 5915 and the lexicon size is 1222 (plus the
end of sentence). Therefore, the number of transition in the
automaton is 7.2 millions. (If four bytes are used to define the
end of the transition and four more for the probability, then the
memory required to store the automaton would be more than 55
megabytes).

2.2 Compacted representation.

The representation of x-gram can be compacted if the back-off
smoothing is not applied during the estimation of the model, but
when using the model. For each history, 4, the probabilities of
each unseen word following /4, are obtained by multiplying the
factor V(h) with the probabilities of the unseen words following
the back-off history. V(h) is computed as Q(h)/T(h), were Q(h)
is the reserved mass of probability for unseen words leaving
state <#> and T(h) is the value which makes that the sum of the
probabilities is one. For instance, in the previous example, only
symbol b is seen after history A = <ab> The probabilities
p(alab) and p($/ab) are estimated using the smoothing in the
following form:

p{alab) = V(ab) p(alb)
p($/ab) = V(ab) p($/D)

In fact, because the history has not been selected, the
probabilities are estimated as:

plalab) = V’(ab) p(a)
p($/ab) = V'(ab) p($)

The representation is enormously simplified if null transitions
are allowed. Figure 1.b shows the x-gram of the example using
this representation.

For the geographical task, the number of states is 5916: the
5915 that appear in table 1, plus the unigram state that has to be
included. The number of transitions (including null transitions)
is 30,544, which compares favourably with the 7.2 millions of
the expanded representation. The representation is reduced by a
factor greater than 200.

The advantage of this representation resides in its compactness.
However, the representation has also some disadvantages.

First, the representation is not a formal automaton. In an
automaton, when a state is accessed, all the transitions can be
followed, as is the case of the automaton of figure 1.a.
However, in the automaton of figure 2, the valid transitions
depend on the way how the state was accessed. For instance,
from state <0>, the transitions that can be followed are:

a,$ if state <0> has been accessed from <a> or <ab>
b,$ if state <0> has been accessed from <$>

This makes the use of the automaton more inefficient. For
instance, to compute the probability of a sentence, the algorithm
looks at each word and looks for a non-null transition from the
state. If there is not non-null transition, then goes to a new state
following the null transition and looks for a non-null transition
from the new state. If x-grams are used, for some cases, several
null transitions have to be followed before a non-null transition
with the desired word is found.

We use x-grams in speech recognition using the Viterbi
algorithm. For each frame (time), the search space is composed
by the states of the automaton. Each time that an explored path
arrives to the end of a word (associated to a history), the path
has to be ramified into as many paths as words in the lexicon,
and for each word, the probability of the words has to be
applied. In the expanded representation of figure 1.a, the
successors are explicitly expressed in the automaton. However,
if the compact representation of figure 1.b is used, then the
successors have to be expanded dynamically to proceed with
the recognition process. Note that if the x-grams are used in this
way, we have a compact representation in terms of memory but
not in the recognition search. In the geographical task, the
30544 transitions are in fact expanded, as soon as they are
needed, as if there were 7.2 millions of transitions.

Now, let’s assume that the representation of figure 1.b is a
formal automaton. It would mean that when a state is accessed,
all the transitions leaving the state can be followed. In this case
the number of transitions will be absolutely 30544 and the inter-
word recognition search will be much more efficient.

To illustrate this point, let’s consider two hypotheses in the
recognition search (two paths in the trellis) with probability of
finishing in frame ¢ different of zero:

Hypothesis A: Sentence: <..., w_, w>
Hypothesis B: Sentence: <..., w,, w>

Probability: p,
Probability: p,

For each one of the words of the lexicon, w’, with transitions
leading to the same state, the following comparison has to be
done:

p.p(wiw,w) > p -pw/w,w) ey

In practical situations, for most of the words of the vocabulary,
the probability of the new word is based on the probability of
the back-off method. Let’s assume for simplicity in the notation
that the back-off state is the bigram one, labeled with <w>.
Equation (1) can be reformulated as:

p, Vv, wypw’/w) >? p,Viw, w) p(w’/ w) @

where V(w_w) and V(w, w) are the back-off weights.

It can be observed that the result of question (2) seems
independent of the value of w’. If this was the case, the
comparison could be done just once for all the words w’ with
important saving in computation.

The same would happen if the back-off state would be the
unigram <0>. For instance, if state <w> was not included in
the x-gram, then equation (2) would become:

PV (w,w)-pw?) >?7p,V'(w,w) p(w’) 3

which seems to be independent of both w and w’. Again, if this
was the case, the recognition algorithm should select the best
p, V(h) and then propagate the transitions leaving the unigram
state to all the words.

However, equation (2) and (3) are not really independent of w’.
They are independent of w’ as far as there is not a direct
transition labeled w’ leaving state </>. Only in this case, the
probability p(w’/h) relies in V(h) p(w’) (unigram case). This is
the reason why all the transitions have to be considered during
the recognition and not only the small proportion that is needed
to represent the automaton. Equation (1) has to be used for
every pair h,w’ leading to the same state.

3. NON-DETERMINISTIC X-GRAMS

To speed up the recognition process, we are interested in
consider the representation of figure 1.b as if it was a formal
automaton. In this case, all the transitions leaving the states can
be followed independently of how the state was accessed and
the number of transitions to follow during recognition would be
the same that the number used to represent the automaton. In
this case the automaton is not deterministic: if a non-null
transition labeled with w leaves the state <A>, then other
transitions labeled with w can be found following the null
transition. In this sections we want to evaluate the degradation
that suffers the model if this new view of the automaton is
considered. If the degradation were small, then this new model
would be preferred for speech recognition.

To evaluate the performance, the perplexity in the test-set will
be used. First, it is needed to normalize the probabilities so that
the probabilities leaving each state sum one. If probabilities are
not normalized, as new paths are now allowed, the sum of
probabilities would be greater than one and there would be no
sense in computing the perplexity.

If the automaton is deterministic (compact representation) the
sum of non-null transitions is 1-Q(k). For each state, assuming
than all the other states accomplish the stochastic restriction, we
have to impose

H(1-Q(h) + [, V(h) =1 “

In equation (4), f, is the normalization factor for direct words
(seen histories) and f, is the normalization factor for unseen
words. Two options have been tried: in the first one, we impose
f, = f,: all the probabilities are affected by the same factor. In
the second one, f, is imposed to be 1 assuming that the
probability of seen words is better estimated than the unseen
probabilities. Table 2 shows the perplexity for these two cases
compared with deterministic automaton. The fact that the
automaton is not deterministic introduces a difficulty to
interpret the perplexity as a measure of quality of the model
when the Viterbi algorithm is used to recognize. When
computing the perplexity, the probability of all the paths
through the automaton which produce the same sentence are
added. However, the approximation imposed by the Viterbi
algorithm makes that during recognition, only the probability of
one of these paths is considered. In table 2, the perplexity using
the Viterbi approximation (best path) is also included. It is not
claimed that this measure of the perplexity is better than the real
perplexity to predict the performance of the models in speech
recognition. Instead, the number is given as a measure of the
ambiguity of the model.

X-gram PP PP (vit.) # states |trans/state
deterministic. 7.8 7.8 5915 1223
non det. f=f, 7.8 8.5 5915 52
non det. f=1 7.9 8.3 5915 52

Table 2: Comparison of deterministic vs. non deterministic x-
grams. The table shows, the perplexity, the perplexity computed
using the Viterbi approximation, the number of selected histories
(states) and the number of transitions per state which should be
followed during recognition.

It can be seen in the table how non deterministic x-grams are as
good models as the deterministic ones and their complexity
during recognition is much smaller. Even when the PP(vit) is
considered, the result is similar to deterministic trigrams but
with less complexity in number of states and in number of
transitions.

In order to reduce the ambiguity of the model some experiments
have been performed where only the most ambiguous nodes
have been expanded. The conclusion is that many states have to
be expanded to get significant changes in the perplexity. For
instance, in one experiment we get: PP = 7.8 and PP (vit) = 8.0,

but the number of transitions were reduced only by a factor 3
(compared with a factor 230 for the cases in table 2).

4. SPEECH RECOGNITION USING NON-
DETERMINISTIC X-GRAMS

The result of the previous section is very optimistic. As the
number of transitions per state is reduced by a factor 230, we
could think that the inter-word effort in the recognition search
would also be reduced by the same factor. This would be the
case if the search was complete, but usually, the search is driven
in a beam and all the states are not equally used. For instance, if
each time, only the end of one word is hypothesized, then the
number of transition will be (at least) the lexicon size, and the
complexity of the search when non deterministic x-grams are
used would be the same than when deterministic x-grams are
used. In this section, the saving of using non-deterministic X-
grams is analyzed using speech recognition experiments.

Non-deterministic x-grams have been evaluated using a Viterbi-
based recognition algorithm. The system includes broad
silence/speech detection. The language model is the non-
deterministic x-gram presented in section 3, preceded by an
optional silence model. Each word of the lexicon is represented
as a sequence of sublexical units optionally followed by a
silence model. Each model is represented by HMM (continuous,
semicontinuous or discrete). During the search the lexicon is
organized linearly. The search effort is limited using beam
search. The beam search was adjusted so that there were no
significant search errors.

The use of non-deterministic x-grams is useful only in the case
that several words end simultaneously. So, the first evaluation
consist in counting the number of frames where there are ending
words and the mean number of ending words in these ending
frames. The experiments showed that 93% of the frames have
ending words. For these frames, the mean number of ending
words is 65.

If deterministic x-grams were used, for each ending frame, the
number of transitions that should be propagated would be
1222/ending word (the lexicon size). If non-deterministic x-
grams are used the mean number of transitions for each ending
word happens to be 31.7. The saving is not as optimistic as
predicted in section 3 (230), but still quite significant (38).
Furthermore, the transitions have not to be expanded
dynamically, speeding up the recognition process.

Look-ahead.

In large vocabularies, it is not feasible to propagate all the
words. Tree organization of the lexicon or look-ahead search is
required. Our system uses look ahead which significantly
reduces the number of evaluated transitions. The look-ahead
search is organized in the following way. First, the non-null
transitions leaving each state are sorted by the probability of the
transition (off-line). Second, for each frame, the probability that
each phone begins is estimated using the next four frames. This
estimation uses simplified one-state HMM, which makes this
estimation very fast. The best probability that a phone begins in
this frame is also registered simultaneously (MaxLA). The

probability that a word begins in the frame, LA(w), is directly
the probability estimated for the first phone of the word.

The algorithm first makes the intra-word search (inside the
lexicon) and then the inter-word search. When the intra-word
search is being performed, the ending word with greater
probability is registered. Let’s be <h'> the state associated to
this best ending word and p,, the accumulated probability.
Then, the look-ahead beam is defined using a minimum
probability. Only the paths with higher probability are
propagated. The minimum probability p__ is defined as follows:

Poin = max {p(wih') LA(w)} p,JA,,

The maximization is made for all the words (transitions) leaving
the state <k'>. A, defines the look-ahead beam width. The
value of p,, is an initialization, which is updated when doing
the inter-word search.

The inter-word recursion is as follows:

For each ending word (associated to the state <h>)
For each transition associated with word w
if (p,p(wih) LA(w) > p,) then propagate
if (p,p(wih) MaxLA <p) then go to next ending word.

min

As the transitions are sorted, the second condition guarantees
that the rest of transitions leaving <A> will not accomplish the
first condition. Therefore, these transitions do not have to be
evaluated. The experimentation reveals that using this
organization, instead of considering 31.7 transitions per ending
word, only 4.0 transitions need to be considered.

5. SUMMARY

In this paper, the x-grams have been reviewed making emphasis
in representations of the x-grams as finite state automata. This
representation suggests a new model, the non-deterministic x-
gram, which greatly reduces the number of inter-word
transitions that have to be followed in the speech recognition
search. The experimentation shows that the loss in terms of
perplexity of this new model is very small while the number of
transitions is reduced by a factor of 30 in a task of geographical
queries. Another advantage of the representation is that because
we use a formal automaton, standard transformations of
automatons can be done. For instance, in the geographical task,
we have found very useful to substitute in the training text each
name of river, mountain, length number, etc. by a generic label
and, afterwards, to expand the nodes labeled with generic labels
using a hand-coded representation. The input and the output of
the expansion algorithm are just finite state automata.

The paper is based in x-grams because they have proven to be
better than trigrams. However, the methodology presented is
also valid for bigrams and trigrams.

6. REFERENCES

1. A. Bonafonte et al., “Language Modeling Using X-
grams”, International Conference on Spoken Language
Processing, ICSLP-96, pp. 394-397, Philadelphia, 1996.

